• Title/Summary/Keyword: AI Vaccine

Search Result 13, Processing Time 0.024 seconds

SPF 닭에서 재조합 H9N3 조류 인플루엔자 백신의 효능과 안전성 평가

  • Sin, Jeong-Hwa;Mo, In-Pil
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.90-91
    • /
    • 2006
  • To reduce the economic impact and control Low pathogenic avian influenza (LPAI), vaccination with inactivated vaccine has been considered in this country. We tried to develop inactivated vaccine with reassorted H9N3 AI virus which has different type of neuraminidase compare to those of field AI virus. Before reassorted vaccine was produced, we confirm the virus as master seed by limiting dilution, RT-PCR and sequencing method. Also, we evaluate the biological characteristics of the virus to find out the possibility of prevention against field infection of AI virus. Finally, we evaluate the safety and efficacy of the vaccine made of reassorted AI virus in the specific pathogen free (SPF) chickens. After limiting dilution, we choose RV7CE4 as a vaccine candidate and compare the gene sequence of this vaccine strain to those of AI05GA which is parents strain. Compared to amino acid sequences of specific gene of AI05GA and RV7CE4, exhibited a high degree of amino acid sequence homology. In the safety and efficacy test, there were no specific clinical signs or mortality. Reassorted H9N3 viruses were reisolated in cloaca swab on 5 days post inoculation. In the vaccine study, once or twice vaccination was performed and challenged with H9N2 field virus (01310). Vaccine has no adverse effect on birds and formed good immune capability which reduce viral shedding in the birds infected with 01310. Based on the above result, we developed reassorted H9N3 vaccine which will efficiently prevent the low pathogenic AIV (H9N2) infection in the poultry farms.

  • PDF

Modulation of Humoral and Cell-Mediated Immunity Against Avian Influenza and Newcastle Disease Vaccines by Oral Administration of Salmonella enterica Serovar Typhimurium Expressing Chicken Interleukin-18

  • Rahman, Md Masudur;Uyangaa, Erdenebileg;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2013
  • Interleukin-18 (IL-18) has been known to induce interferon-${\gamma}$ (IFN-${\gamma}$) production and promote Th1 immunity. Although mammalian IL-18 has been characterized in great detail, the properties and application of chicken IL-18 remain largely uninvestigated as of yet. In this study, we evaluated the immunomodulatory properties of Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 (chIL-18) on immune responses induced by avian influenza (AI) and Newcastle disease (ND) vaccines. After oral administration of S. enterica serovar Typhimurium expressing chIL-18, chickens were vaccinated intramuscularly with the recommended dose of either inactivated AI H9N2 vaccine or ND (B1 strain) vaccine. Chickens receiving a primary vaccination were boosted using the same protocol 7 days later. Humoral and cell-mediated immune responses were evaluated in terms of HI antibody titers and proliferation and mRNA expression of IFN-${\gamma}$ and IL-4 of peripheral blood mononuclear cells (PBMC) in response to specific antigen stimulation. According to our results, oral administration of S. enterica serovar Typhimurium expressing chIL-18 induced enhanced humoral and Th1-biased cell-mediated immunity against AI and ND vaccines, compared to that of chickens received S. enterica serovar Typhimurium harboring empty vector. Therefore, we conclude that our proposed vaccination regimen using inactivated AI and ND viruses along with oral administration of S. enterica serovar Typhimurium expressing chIL-18 may provide a novel approach in protecting chicken from currently circulating AI and ND virus strains.

Evaluation on Immunogenicity and Safety of Avian Influenza Isolate(ADL0401) as a Candidate for the Killed Vaccine against tow-Pathogenic Avian Influenza (약병원성 조류인플루엔자 사독백신개발을 위한 후보주(ADL0401)의 면역 원성 및 안전성 평가)

  • Lee J. S.;Ha D. H.;Kim J. E.;Ha B. D.;Mo I. P.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Avian influenza (AI) virus (AIV) is distributed worldwide and it has been isolated from various species of wild and domestic birds. AI transfers with high speed and shows diverse pathogenicity syndroms. In Korea, several low Pathogenic AIV, H9N2, have been isolated from the commercial farms with severe decrease of egg production and mortality resulted in severe economic loss since 1996. Therefore, it has been requested to develop AI vaccines to prevent clinical signs and economic losses from the field infection of AIV. To develop a killed vaccine that efficiently prevents low pathogenic AIV (H9N2), evaluation on the pathogenicity and selection of an inactivator for H9N2 is taking place and is being tested safety and immunogenicity of vaccine produced. Based on the pathogenicity test and viral reisolation test, the ADL0401 isolate is the characteristic low pathogenic AIVs and has fairly similar biologic functions compared with MS96 which is the official low pathogenic AIV (H9N2) and one of the predominant AIV isolated from poultry farms in Korea. In antigenicity tests, the ADL0401 and MS96 virus have no significant antigenic difference. In inactivation tests, the ADL0401 isolates can be easily inactivated with $0.1\%$ Formalin at $37^{\circ}C$ within 1 hour with a little decrease of HA titer. The vaccine developed in the present report has no harmful effect on bird and forms good immune capability. Therefore, the isolates, ADL0401 can be used for a killed vaccine which can reduce the clinical signs and viral shedding in the birds infected with H9N2 low pathogenic AIVs.

A Study on AI Vaccine for the Defense against Adversarial Attack (적대적 공격의 방어를 위한 AI 백신 연구)

  • Song, Chae-Won;Oh, Seung-A;Jeong, Da-Yae;Lim, Yuri;Rho, Eun-Ji;Lee, Gyu-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1132-1135
    • /
    • 2021
  • 본 논문에서는 머신러닝 시스템에 심각한 오류를 발생시킬 수 있는 적대적 샘플을 제작하고, 이를 이용한 적대적 공격을 효과적으로 예방하고 방어할 수 있는 Adversarial Training 기반의 AI 백신을 개발하였으며, 본 논문이 제안하는 AI 백신이 적대적 샘플을 올바르게 인식하고 AI 공격 성공율을 현저하게 낮추는 등 강인성을 확보한 것을 실험을 통해 입증하였다. 아울러 스마트폰을 통해 수행결과를 확인할 수 있는 어플리케이션을 구현하여, 교육 및 시연 등을 통해 적대적 AI 공격에 대한 심각성을 인식하고 해당 방어과정을 명확히 이해할 수 있도록 하였다.

Current situation and control strategies of H9N2 avian influenza in South Korea

  • Mingeun Sagong;Kwang-Nyeong Lee;Eun-Kyoung Lee;Hyunmi Kang;Young Ki Choi;Youn-Jeong Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.5.1-5.16
    • /
    • 2023
  • The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.

Molecular biological characterization of transmissible gastroenteritis viruses isolated in Korea (돼지 전염성 위장염 바이러스(국내분리주)의 분자생물학적 특성 규명)

  • Kwon, Hyuk-moo;Pi, Jae-ho
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.304-313
    • /
    • 1998
  • Sixteen Korean field transmissible gastroenteritis viruses (TGEVs) were isolated using swine testicular cell (STC) and the genomic diversity of them was analyzed. All TGEV isolates produced a typical cytopathic effect in STC and were confirmed as TGEV by immunofluorescence assay using monoclonal antibody against TGEV and PCR using TGEV specific primers. RNAs from TGEV field isolates and vaccine TGEV were extracted and amplified by RT and PCR. The RT-PCR products were digested with selected restriction enzymes and analyzed RFLP patterns. The N-terminal end region of S gene and ORF 3 and 3-1 genes of TGEV amplified by TGEV specific primer pairs seemed to be conserved. Most specific variations were detected in S gene amplified by TGEV 4/6 primer pairs which includes antigenic sites A and D. When the PCR products were treated with Sau3AI and Ssp I, Bvac(vaccine strain), field isolates 133 and 347 were differentiated from Miller and Purdue types. In the case of D5 field isolates, it was classified into Purdue type by Sau 3AI but classified into independent TGEV by Ssp I. Two different TGEV strains from D2 sample were confirmed by plaque purification and RT-PCR-RFLP analysis. To investigate the change occurring in TGEV genome after serial passage, the TGEV P44 strain was passaged through STC. There were specific changes in S gene and a large deletion was observed in ORF 3 and 3-1 genes. These studies showed that a distinct difference in genome exists among TGEV field isolates.

  • PDF

Development of Vaccine with Artificial Intelligence: By Analyzing OP Code Features Based on Text and Image Dataset (OP Code 특징 기반의 텍스트와 이미지 데이터셋 연구를 통한 인공지능 백신 개발)

  • Choi, Hyo-Kyung;Lee, Se-Eun;Lee, Ju-Hyun;Hong, Rae-Young;Choi, Won-Hyok;Kim, Hyung-Jong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1019-1026
    • /
    • 2019
  • Due to limitations of existing methods for detecting newly introduced malware, the importance of the development of artificial intelligence vaccines arises. Existing artificial intelligence vaccines have a disadvantage that the accuracy of the detection rate is low because those vaccines do not scan all parts of the file. In this paper, we suggest an enhanced method for detecting malware which is composed of unique OP Code features in the malware files. Specifically, we tested the method with text datasets trained on Random Forest algorithm and with image datasets trained on the Inception V3 model. As a result, the highest accuracy of the detection rate was about 80%.

HPC Technology Through SC20 (SC20를 통해 본 HPC 기술 동향)

  • Eo, I.S.;Mo, H.S.;Park, Y.M.;Han, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.133-144
    • /
    • 2021
  • High-performance computing (HPC) is the underpinning for many of today's most exciting new research areas, to name a few, from big science to new ways of fighting the disease, to artificial intelligence (AI), to big data analytics, to quantum computing. This report captures the summary of a 9-day program of presentations, keynotes, and workshops at the SC20 conference, one of the most prominent events on sharing ideas and results in HPC technology R&D. Because of the exceptional situation caused by COVID-19, the conference was held entirely online from 11/9 to 11/19 2020, and interestingly caught more attention on using HPC to make a breakthrough in the area of vaccine and cure for COVID-19. The program brought together 103 papers from 21 countries, along with 163 presentations in 24 workshop sessions. The event has covered several key areas in HPC technology, including new memory hierarchy and interconnects for different accelerators, evaluation of parallel programming models, as well as simulation and modeling in traditional science applications. Notably, there was increasing interest in AI and Big Data analytics as well. With this summary of the recent HPC trend readers may find useful information to guide the R&D directions for challenging new technologies and applications in the area of HPC.

Analysis of the spike glycoprotein gene and nonstructural protein gene of transmissible gastroenteritis virus using PCR and RFLP analysis (PCR과 RFLP분석을 이용한 transmissible gastroenteritis virus의 spike glycoprotein gene과 nonstructural protein gene의 분석)

  • Kwon, Hyuk-moo
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.627-633
    • /
    • 1996
  • To analyze the genomic diversity of transmissible gastroenteritis virus (TGEV), the N-terminal half of the spike (S) glycoprotein gene and nonstructural protein gene (open reading frames 3 and 3-1) were amplified by reverse transcriptase reaction and polymerase chain reaction (RT-PCR), and analyzed using restriction fragment length polymorphism (RFLP) patterns of the amplified DNA. In this study, TGEV Miller (M6) and Purdue (P115) strains were used as reference strains, and two vaccine strains (MSV and STC3) and four Korea isolates (P44, VRI-WP, VRI-41, and VRI-48) were analyzed. All TGEV strains were amplified with three TGEV primer pairs. Although there was some exception in RFLP analysis, this method differentiated TGEV strains into following groups : Miller group (M6 and MSV), Purdue group (PUS, STC3, P44, VRI-WP, VRI-41, and VRI-48). Using Sau3AI and SspI, VRI-48 was differentiated from the Miller and Purdue type viruses. The RT/PCR in conjuction with RFLP analysis was a rapid and valuable tool for differentiating several strains of TGEV. This study revealed the occurences of distinct difference in genome of TGEV strains.

  • PDF

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.