• Title/Summary/Keyword: AI Space

Search Result 198, Processing Time 0.024 seconds

A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information

  • Kim, Heeyoung;Jung, Sunmi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • The growth of the mobile app markets has made it popular among people who recommend relevant information about restaurants. The recommendation service app based on AI Chatbot is that it can efficiently manage time and finances by making it easy for restaurant consumers to easily access the information they want anytime, anywhere. Eating out consumers use smartphone applications for finding restaurants, making reservations, and getting reviews and how to use them. In addition, social attention has recently been focused on the research of AI chatbot. The Chatbot is combined with the mobile messenger platform and enabling various services due to the text-type interactive service. It also helps users to find the services and data that they need information tersely. Applying this to restaurant recommendation services will increase the reliability of the information in providing personal information. In this paper, an artificial intelligence chatbot-based smartphone restaurant recommendation app using personalization information is proposed. The recommendation service app utilizes personalization information such as gender, age, interests, occupation, search records, visit records, wish lists, reviews, and real-time location information. Users can get recommendations for restaurants that fir their purpose through chatting using AI chatbot. Furthermore, it is possible to check real-time information about restaurants, make reservations, and write reviews. The proposed app uses a collaborative filtering recommendation system, and users receive information on dining out using artificial intelligence chatbots. Through chatbots, users can receive customized services using personal information while minimizing time and space limitations.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

SPACE SOLAR TELESCOPE

  • AI GUOXIANG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.415-418
    • /
    • 1996
  • Space Solar Telescope (SST) is a space project for solar research, its main parameters are that total weight 2.0T, sun synchronous polar circular orbit, altitude of the orbit 730KM, 3 axis stabilized attitude system, power 1200W, telemetry of the downlink rate 30Mb/s, size $5{\ast}2{\ast}2\;M^3$, mission life 3 years. It is expected it will be launched in 2001 or later. The main objective is structure and evolution of solar vector magnetic field with very high spatial resolution. The payloads are consisted of 6 instruments: Main optical telescope with 1-M diameter and diffraction limited resolution 0.1 arc second, EUV imaging telescope with a bundle of four telescopes and 0.5 arc second resolution, spectrometric optical coronagraph, wide band spectrometer, H-alpha and white light telescope and solar and interplanetary radiospectrometer. An assessment study between China and Germany is under operation.

  • PDF

Intelligent Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 지능형 디지털 분산 제어 시스템 개발)

  • Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the intelligent digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for Heating, ventilating, and ai. conditioning (HVAC) system are provided.

Detection Scheme Based on Gauss - Seidel Method for OTFS Systems (OTFS 시스템을 위한 Gauss - Seidel 방법 기반의 검출 기법)

  • Cha, Eunyoung;Kim, Hyeongseok;Ahn, Haesung;Kwon, Seol;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.244-247
    • /
    • 2022
  • In this paper, the performance of the decoding schemes using linear MMSE filters in the frequency and time domains and the reinforcement Gauss-Seidel algorithm for the orthogonal time frequency space (OTFS) system that can improve robustness under high-speed mobile environments are compared. The reinforcement Gauss-Seidel algorithm can improve the bit error rate performance by suppressing the noise enhancement. The simulation results show that the performance of the decoding scheme using the linear MMSE filter in the frequency domain is severely degraded due to the effect of Doppler shift as the mobile speed increases. In addition, the decoding scheme using the reinforcement Gauss-Seidel algorithm under the channel environment with 120 km/h and 500 km/h speeds outperforms the decoding schemes using linear MMSE filters in the frequency and time domains.

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

Application of Deep Learning to Solar Data: 1. Overview

  • Moon, Yong-Jae;Park, Eunsu;Kim, Taeyoung;Lee, Harim;Shin, Gyungin;Kim, Kimoon;Shin, Seulki;Yi, Kangwoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2019
  • Multi-wavelength observations become very popular in astronomy. Even though there are some correlations among different sensor images, it is not easy to translate from one to the other one. In this study, we apply a deep learning method for image-to-image translation, based on conditional generative adversarial networks (cGANs), to solar images. To examine the validity of the method for scientific data, we consider several different types of pairs: (1) Generation of SDO/EUV images from SDO/HMI magnetograms, (2) Generation of backside magnetograms from STEREO/EUVI images, (3) Generation of EUV & X-ray images from Carrington sunspot drawing, and (4) Generation of solar magnetograms from Ca II images. It is very impressive that AI-generated ones are quite consistent with actual ones. In addition, we apply the convolution neural network to the forecast of solar flares and find that our method is better than the conventional method. Our study also shows that the forecast of solar proton flux profiles using Long and Short Term Memory method is better than the autoregressive method. We will discuss several applications of these methodologies for scientific research.

  • PDF

A Study on AI Algorithm that can be used to Arts Exhibition : Focusing on the Development and Evaluation of the Chatbot Model (예술 전시에 활용 가능한 AI 알고리즘 연구 : 챗봇 모델 개발 및 평가를 중심으로)

  • Choi, Hak-Hyeon;Yoon, Mi-Ra
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.369-381
    • /
    • 2021
  • Artificial Intelligence(AI) technology can be used in arts exhibitions ranging from planning exhibitions, filed progress, and evaluation. AI has been expanded its scope from planning exhibition and guidance services to tools for creating arts. This paper focuses on chatbots that utilize exhibition and AI technology convergence to provide information and services. To study more specifically, I developed a chatbot for exhibition services using the Naver Clova chatbot tool and information from the National Museum of Modern and Contemporary Art(MMCA), Korea. In this study, information was limited to viewing and exhibition rather than all information of the MMCA, and the chatbot was developed which provides a scenario type to get an answering user want to gain through a button and a text question and answer(Q&A) type to directly input a question. As a result of evaluating the chatbot with six items according to ELIZA's chatbot evaluation scale, a score of 4.2 out of 5 was derived by completing the development of a chatbot to be used to deliver viewing and exhibition information. The future research task is to create a perfect chatbot model that can be used in an actual arts exhibition space by connecting the developed chatbot with continuous scenario answers, resolving text Q&A-type answer failures and errors, and expanding additional services.

IoT Based Distributed Intelligence Technology for Hyper-Connected Space (IoT기반 초연결 공간 분산지능 기술)

  • Park, J.H.;Son, Y.S.;Park, D.H.;Cho, J.M.;Bae, M.N.;Han, M.K.;Lee, H.K.;Choi, J.C.;Kim, H.;Hwang, S.K.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • IoT is used not only as a technical terminology but also as a paradigm representation. As the number of IoT devices spread tremendously throughout the world, they are able to be located anywhere,recognize their environment, and achieve adaptable reactions. All market investigation agencies expect the number of IoT devices to reach tens to hundreds of billions in number. They also expect various technical problems owing to the huge number of connected things and data that will emerge during the AI era. The decentralization of centralized computing for AI is the one of the technical solutions to such problems, and the computing roles for AI will be soon distributed into the things, which can be located anywhere. In this article, the traditional distributed intelligence and its current research activities are introduced, and the next distributed intelligence target for the IoT 2.0 era is briefly touched upon using the keyword Socio-Things.

Optimal Design of Resonant Network Considering Power Loss in 7.2kW Integrated Bi-directional OBC/LDC (7.2kW급 통합형 양방향 OBC/LDC 모듈의 전력 손실을 고려한 공진 네트워크 최적 설계)

  • Song, Seong-Il;Noh, Jeong-Hun;Kang, Cheol-Ha;Yoon, Jae-Eun;Hur, Deog-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Integrated bidirectional OBC/LDC was developed to reduce the volume for elements, avoid space restriction, and increase efficiency in EV vehicles. In this study, a DC-DC converter in integrated OBC/LDC circuits was composed of an SRC circuit with a stable output voltage relative to an LLC circuit using a theoretical method and simulation. The resonant network of the selected circuit was optimized to minimize the power loss and element volume under constraints for the buck converter and the battery charging range. Moreover, the validity of the optimal model was verified through an analysis using a theoretical method and a numerical analysis based on power loss at the optimized resonant frequency.