• Title/Summary/Keyword: AI Solution Company

Search Result 9, Processing Time 0.018 seconds

A Study on the Improvement Plan of AI Voucher Support Project based on the Perception of AI Solution Companies (AI 솔루션 기업 관점의 AI 바우처 지원사업 개선방안 연구)

  • Cho, Ji Yeon;Song, In-Kuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • In the recent pandemic situation, importance of artificial intelligence has been highlighted and major countries are making efforts to secure leadership in AI technology. The Korean government has been continuously expanding government investment to secure technological competitiveness. Despite the importance of efficient operation strategies for government-supported projects, related discussions rarely existed. Therefore, this study aims to analyze the AI voucher support project, which is a representative government project in the AI field, and to suggest improvement plans. An interview with AI solution companies was conducted, and issues in the process of promoting AI voucher support projects were identified through content analysis. Based on the analysis results, improvement plans were presented in stages of project preparation, progression, termination, and follow-up management. This study has significance in suggesting improvement plans for the government support project for the successful growth of the AI industry at a time when the importance of AI is increasing.

Artificial Intelligence Technology Trends and IBM Watson References in the Medical Field (인공지능 왓슨 기술과 보건의료의 적용)

  • Lee, Kang Yoon;Kim, Junhewk
    • Korean Medical Education Review
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2016
  • This literature review explores artificial intelligence (AI) technology trends and IBM Watson health and medical references. This study explains how healthcare will be changed by the evolution of AI technology, and also summarizes key technologies in AI, specifically the technology of IBM Watson. We look at this issue from the perspective of 'information overload,' in that medical literature doubles every three years, with approximately 700,000 new scientific articles being published every year, in addition to the explosion of patient data. Estimates are also forecasting a shortage of oncologists, with the demand expected to grow by 42%. Due to this projected shortage, physicians won't likely be able to explore the best treatment options for patients in clinical trials. This issue can be addressed by the AI Watson motivation to solve healthcare industry issues. In addition, the Watson Oncology solution is reviewed from the end user interface point of view. This study also investigates global company platform business to explain how AI and machine learning technology are expanding in the market with use cases. It emphasizes ecosystem partner business models that can support startup and venture businesses including healthcare models. Finally, we identify a need for healthcare company partnerships to be reviewed from the aspect of solution transformation. AI and Watson will change a lot in the healthcare business. This study addresses what we need to prepare for AI, Cognitive Era those are understanding of AI innovation, Cloud Platform business, the importance of data sets, and needs for further enhancement in our knowledge base.

AI Platform Solution Service and Trends (글로벌 AI 플랫폼 솔루션 서비스와 발전 방향)

  • Lee, Kang-Yoon;Kim, Hye-rim;Kim, Jin-soo
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Global Platform Solution Company (aka Amazon, Google, MS, IBM) who has cloud platform, are driving AI and Big Data service on their cloud platform. It will dramatically change Enterprise business value chain and infrastructures in Supply Chain Management, Enterprise Resource Planning in Customer relationship Management. Enterprise are focusing the channel with customers and Business Partners and also changing their infrastructures to platform by integrating data. It will be Digital Transformation for decision support. AI and Deep learning technology are rapidly combined to their data driven platform, which supports mobile, social and big data. The collaboration of platform service with business partner and the customer will generate new ecosystem market and it will be the new way of enterprise revolution as a part of the 4th industrial revolution.

  • PDF

ICT Utilization for Optimization of SME Decision Making (중소기업 의사결정 최적화를 위한 ICT 활용 방안)

  • Park, Ji-Young;Kim, Kyung-Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.275-280
    • /
    • 2018
  • Companies are now rapidly entering the realm of the realtime economy named 'Now Economy'. 'Now Economy' features the measurement and assessment, accelerating speed of decision making about business. According to this, companies intend to change their disposition to be able to make quick and accurate decision by gathering informations rapidly and correctly, and then by processing that. Applications of ICT can be possible to change the new decision system of companies. In this thesis, the new decision system through amalgamations of BPMS, Mobile, Cloud Service, Hadoop, BI and AI is presented. It will be able to make decision quickly and accurately by collecting all information between the most efficiently managed process and formal and informal data inside company through this, and then by combining changes with situations outside company.

The Effect of Temperature on Stress Corrosion Cracking of AI Brass under Flow

  • Lim, Uh-Joh;Jeong, Hae-Kyoo
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • The effect of temperature on stress corrosion cracking o f Al-brass used in vessel heat exchanger tube was studied in 3.5% NaCI + 0.1% $NH_4OH$ solution. The SCC test using a CDT(constant displacement test) and the specimens using a SEN(single edge notched) specimens. For setting the environment similar to working environment of a heat exchanger, the specimens was immersed in solution and solution flow onto the specimens were performed. The results are as follows : The latent time of stress corrosion crack occurrence gets shorter, as the temperature gets higher. Dezincification phase showed around the crack occupy wider range, as the temperature gets higher. Zn composition falls under 4% at the dezincifiction area.

The Impact of Voucher Support on Economic Performance for AI Companies: Policy Effectiveness Analysis using PSM-DID Model (AI 중소기업 바우처 지원이 기업성과에 미치는 영향: PSM-DID 결합모형을 활용한 정책효과 분석)

  • SeokWon, Choi;JooYeon, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2023
  • In a situation where digital transformation using artificial intelligence is active around the world, the growth of domestic AI companies or AI industrial ecosystems is slow. Where a large amount of government funds related to AI are being invested to overcome the difficult economic situation, systematic research on the effect is insufficient. So, this study aimed to examine the policy effectiveness of the government artificial intelligence solution voucher support project for small and medium-sized enterprises (SMEs) using Propensity Score Matching (PSM) and Difference-in-Differences (DID) on the financial performance of beneficiary companies. For empirical analysis, PSM-DID analysis was performed using sales performance since 2019 for 461 companies with a history of voucher support among the AI SMEs data released by the National IT Industry Promotion Agency. As a result of the analysis, the beneficiary companies' asset growth, salary, and R&D expenses increased overall after government support, and no significant contribution could be confirmed in terms of profits. This study suggests that the voucher policy business directly contributed to the company's growth in the short term, but it requires a certain period of time to generate profits.

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.