• Title/Summary/Keyword: AI Major

Search Result 483, Processing Time 0.022 seconds

Lung cancer, chronic obstructive pulmonary disease and air pollution (대기오염에 의한 폐암 및 만성폐색성호흡기질환 -개인 흡연력을 보정한 만성건강영향평가-)

  • Sung, Joo-Hon;Cho, Soo-Hun;Kang, Dae-Hee;Yoo, Keun-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.585-598
    • /
    • 1997
  • Background : Although there are growing concerns about the adverse health effect of air pollution, not much evidence on health effect of current air pollution level had been accumulated yet in Korea. This study was designed to evaluate the chronic health effect of ai. pollution using Korean Medical Insurance Corporation (KMIC) data and air quality data. Medical insurance data in Korea have some drawback in accuracy, but they do have some strength especially in their national coverage, in having unified ID system and individual information which enables various data linkage and chronic health effect study. Method : This study utilized the data of Korean Environmental Surveillance System Study (Surveillance Study), which consist of asthma, acute bronchitis, chronic obstructive pulmonary diseases (COPD), cardiovascular diseases (congestive heart failure and ischemic heart disease), all cancers, accidents and congenital anomaly, i. e., mainly potential environmental diseases. We reconstructed a nested case-control study wit5h Surveillance Study data and air pollution data in Korea. Among 1,037,210 insured who completed? questionnaire and physical examination in 1992, disease free (for chronic respiratory disease and cancer) persons, between the age of 35-64 with smoking status information were selected to reconstruct cohort of 564,991 persons. The cohort was followed-up to 1995 (1992-5) and the subjects who had the diseases in Surveillance Study were selected. Finally, the patients, with address information and available air pollution data, left to be 'final subjects' Cases were defined to all lung cancer cases (424) and COPD admission cases (89), while control groups are determined to all other patients than two case groups among 'final subjects'. That is, cases are putative chronic environmental diseases, while controls are mainly acute environmental diseases. for exposure, Air quality data in 73 monitoring sites between 1991 - 1993 were analyzed to surrogate air pollution exposure level of located areas (58 areas). Five major air pollutants data, TSP, $O_3,\;SO_2$, CO, NOx was available and the area means were applied to the residents of the local area. 3-year arithmetic mean value, the counts of days violating both long-term and shot-term standards during the period were used as indices of exposure. Multiple logistic regression model was applied. All analyses were performed adjusting for current and past smoking history, age, gender. Results : Plain arithmetic means of pollutants level did not succeed in revealing any relation to the risk of lung cancer or COPD, while the cumulative counts of non-at-tainment days did. All pollutants indices failed to show significant positive findings with COPD excess. Lung cancer risks were significantly and consistently associated with the increase of $O_3$ and CO exceedance counts (to corrected error level -0.017) and less strongly and consistently with $SO_2$ and TSP. $SO_2$ and TSP showed weaker and less consistent relationship. $O_3$ and CO were estimated to increase the risks of lung cancer by 2.04 and 1.46 respectively, the maximal probable risks, derived from comparing more polluted area (95%) with cleaner area (5%). Conclusions : Although not decisive due to potential misclassication of exposure, these results wert drawn by relatively conservative interpretation, and could be used as an evidence of chronic health effect especially for lung cancer. $O_3$ might be a candidate for promoter of lung cancer, while CO should be considered as surrogated measure of motor vehicle emissions. The control selection in this study could have been less appropriate for COPD, and further evaluation with another setting might be necessary.

  • PDF

A Study on Serum Lipid Levels in Elderly People in Wando Area - Based on Age, BMI, WHR - (완도지역 성인 및 노인의 혈청지질 수준에 관한 연구(I) - 연령, 신체 계측치를 중심으로 -)

  • Cha, Bok-Kyeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.68-77
    • /
    • 2006
  • This study was peformed to document the association between nutrient intakes, body mass index (BMI), waist/hip ratio (WHR), and a major risk factor for chronic diseases. A three-day dietary intake survey, using a 24 hour recall method, was obtained from 187 subjects aged 46 to 84 (mean age 65.3) living in Wando island area. The average daily mean energy intakes were 1869.0 kcal for male and 1943.9 kcal for female, respectively. Daily intakes of protein for male and female were 28.0 and 30.4 g, and those of fat were 31.5 and 28.51 g, respectively Carbohydrate dependency was decreased with age. Protein dependency was increased with age. The mean intakes of energy, protein, Vit. A, Vit. D, Vit. E, Ca, Zn did not meet Korean RDA for elderly. The level of serum triglyceride was higher in males than in females and showed the tendency to increase with age in both sexes, whereas HDL-cholesterol tended to decrease with age in both sexes. The levels of serum total-cholesterol and LDL-cholesterol were significantly higher in males than in females, particularly in the age of $46\~59$ (p<0.05). The level of atherogenic index (AI) was significantly higher in females than in males, particularly in the age of 80 and over (p<0.05) Based on these results, it is evident that people in island area did not consume enough nutrient. Specially, dietary intake of protein was not adequate. This study implies that triglyceride, total-cholesterol, LDL-cholesterol, AI were increased with increasing age, BMI and WHR.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.