In this research, a comprehensive study is performed upon the design of a quadruped walking robot. In advance, the walking posture and skeletal configuration of the vertebrate are analyzed to understand quadrupedal locomotion, and the roles of limbs during walking are investigated. From these, it is known that the forelimbs just play the role of supporting their body and help vault forward, while most of the propulsive force is generated by hind limbs. In addition, with the study of the stances on walking and energy efficiency, design criteria and control method for a quadruped walking robot are derived. The proposed controller, though it is simple, provides a useful framework for controlling a quadruped walking robot. In particular, introduciton of a new rhythmic pattern generator relieves the heavy computational burden because it does not need any computation on kinematics. Finally, the proposed method is validated via dynamic simulations and implementing in a quadruped walking robot, called AiDIN(Artificial Digitigrade for Natural Environment).
No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
Nuclear Engineering and Technology
/
v.44
no.4
/
pp.393-404
/
2012
After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.
Yun-Gyeong Song;Yu-Jin Ha;A-Yeong Seong;Gun-Woo Kim
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.603-605
/
2023
최근 SNS 의 발달로 인해 자신의 감정을 빠르고 효과적으로 전달할 수 있는 이모지의 중요성이 커지고 있다. 하지만 이모지를 수동으로 생성하기 위해서 시간과 비용이 많이 들고 자신의 감정에 맞는 이모지를 찾아야 하며 해당 이모지가 없을 수 있다. 기존 DCGAN 을 활용한 이모지 자동 생성연구에서는 부족한 데이터셋으로 인해 G(Generator)와 D(Discriminator)가 동등하게 학습하지 못해서 두 모델 간 성능 차이가 발생한다. D 가 G 보다 최적해에 빠르게 수렴하여 G 가 학습이 되지 않아 낮은 품질의 이모지를 생성하는 불안정 문제가 발생한다. 이 문제를 해결하기 위해 본 논문에서는 Latent vector 분포를 데이터셋에 맞게 조정하여 적은 데이터로 G 에서 안정적으로 학습할 수 있게 하는 G 구조와 다양한 이모지 생성을 위한 Latent vector 평균 조정 기법을 제안한다. 비교 실험 결과 불안정 문제를 개선하였고 FID 와 IS 수치를 통해 성능 개선 효과를 검증했다.
Ha, Sang-Hyun;Jeong, Seok Chan;Jeon, Young-Joon;Jang, Mun-Seok
Journal of the Korean Society of Industry Convergence
/
v.24
no.6_2
/
pp.699-706
/
2021
Existing license plate recognition system is used as an optical character recognition method, but a method of using deep learning has been proposed in recent studies because it has problems with image quality and Korean misrecognition. This requires a lot of data collection, but the collection of license plates is not easy to collect due to the problem of the Personal Information Protection Act, and labeling work to designate the location of individual license plates is required, but it also requires a lot of time. Therefore, in this paper, to solve this problem, five types of license plates were created using a virtual Korean license plate generation program according to the notice of the Ministry of Land, Infrastructure and Transport. And the generated license plate is synthesized in the license plate part of collectable vehicle images to construct 10,147 learning data to be used in deep learning. The learning data classifies license plates, Korean, and numbers into individual classes and learn using YOLOv5. Since the proposed method recognizes letters and numbers individually, if the font does not change, it can be recognized even if the license plate standard changes or the number of characters increases. As a result of the experiment, an accuracy of 96.82% was obtained, and it can be applied not only to the learned license plate but also to new types of license plates such as new license plates and eco-friendly license plates.
The Journal of the Convergence on Culture Technology
/
v.10
no.5
/
pp.803-808
/
2024
As a service that creates graphic work images with AI, DALL-E2, Midjourney, Stable Diffusion, BING image generator, and Playground AI are widely used. It is that graphic also enables learner-led customized education. With this, it is worth studying detailed design customized learning materials and methods for designing efficient design in future 2D graphic work, and it is necessary to explore the areas of application. The current situation is that it is necessary to develop a design education system that can indicate the lack of AI technology through text security and questions. In this study, a successful proposal for a process that is produced through a process of creating AI design work through proxy work can be presented as a conclusion. Design, advertisement, and visual content companies are already using and adapting, and the trend is to reflect the AI graphic utilization ability and results in the portfolio along with interviews when hiring new employees. In line with this, detailed consideration and research on visual and design production methods for AI convergence between instructors and learners are currently needed. In this paper, proposals and methods for image quality production were considered in the main body and conclusions, and conclusive directions were proposed for five alternatives and methods for future applications.
Proceedings of the Korea Information Processing Society Conference
/
2003.05a
/
pp.305-308
/
2003
요즘 사람들이 많이 즐기는 전략 게임은 전략 시뮬레이션이라는 말이 무색할 정도로 장르가 가지는 특성 을 이행하지 못하고 있다. 그래서 게이머들은 별다른 전략 없이 쉽게 컴퓨터를 상대로 쉽게 게임을 승리 할 수 있게 됐다. 이것은 게임의 재미를 크게 반감시키는 한 요인이 된다. 전략 게임의 컴퓨터 플레이어에게 상황 판단과 학습 능력을 갖게 하면, 게이머가 보다 재미있게 컴퓨터와 대전을 할 수 있다. 본 논문에서는 인공지능을 가지는 컴퓨터 플레이어에 사용될 Default 추론 엔진과 컴퓨터 플레이어의 작전과 행동을 결정하기 위한 action & strategy generator 시스템을 연구한다. Default 추론 엔진은 귀납적 학습방법을 통 해서 컴퓨터 플레이어가 추론 및 학습을 할 수 있는 정보를 생성하게 된다. 이렇게 생성된 정보를 바탕으로 컴퓨터 캐릭터의 행동과 전략을 결정한다. 이에 본 논문에서는 전략 게임에 인공 지능으로 machine leaning 기법 중의 하나인 decision Tree 틀 사용하였다. decision Tree를 적용하여 기존 컴퓨터 플레이어의 행위와 어떻게 다른지 차별성을 밝혀내고, 컴퓨터 플레이어가 향상된 전략을 구사할 수 있게 하는 것이 주된 목표다.
We introduce an arbitrary waveform generation method and its H/W implementation case based on Rademacher and Walsh function. According to the orthogonal and periodic features of Rademacher and Walsh function, simple calculations can generate arbitrary waves with affordable logics. We implemented an FPGA-based AWS using above two functions, and verified. HDL simulation shows the proposed idea can draw desired analog test waveforms very fast, and its H/W size is promising to Built-Out Self-Test(BOST) logics for AI ICs.
As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.5
/
pp.891-898
/
2022
Along with global interest, drones are expanding the base of utilization such as transportation of goods, forest protection, and safety management, and cluster flights are being applied in various fields such as military operations and environmental monitoring. Currently, specialized networks such as e-UM 5G for services in specific industries are being established in Korea. In this regard, drone systems are also moving to establish specialized networks to provide services that are fused with AI and autonomous flight. As drones converge with various services, various security threats in various environments are also subordinated, and in response, requirements and guidelines for drone security are being prepared in Korea. In this paper, we propose a technology method for peer identification and safe information provision between cluster flight drones by utilizing a cryptographic module equipped with wireless LAN and quantum entropy-based random number generator in a cluster flight system and a mobile communication network such as e-UM 5G.
Multi-modal generation is the process of generating results based on a variety of information, such as text, images, and audio. With the rapid development of AI technology, there is a growing number of multi-modal based systems that synthesize different types of data to produce results. In this paper, we present an AI system that uses speech and text recognition to describe a person and generate a montage image. While the existing montage generation technology is based on the appearance of Westerners, the montage generation system developed in this paper learns a model based on Korean facial features. Therefore, it is possible to create more accurate and effective Korean montage images based on multi-modal voice and text specific to Korean. Since the developed montage generation app can be utilized as a draft montage, it can dramatically reduce the manual labor of existing montage production personnel. For this purpose, we utilized persona-based virtual person montage data provided by the AI-Hub of the National Information Society Agency. AI-Hub is an AI integration platform aimed at providing a one-stop service by building artificial intelligence learning data necessary for the development of AI technology and services. The image generation system was implemented using VQGAN, a deep learning model used to generate high-resolution images, and the KoDALLE model, a Korean-based image generation model. It can be confirmed that the learned AI model creates a montage image of a face that is very similar to what was described using voice and text. To verify the practicality of the developed montage generation app, 10 testers used it and more than 70% responded that they were satisfied. The montage generator can be used in various fields, such as criminal detection, to describe and image facial features.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.