• 제목/요약/키워드: AI Department

검색결과 2,083건 처리시간 0.034초

AI 쳇봇을 활용한 플립러닝 기반의 대학교육의 변화 (A study on the Change of University Education Based on Fliped Learning Using AI)

  • 김옥분;조영복
    • 한국정보통신학회논문지
    • /
    • 제22권12호
    • /
    • pp.1618-1624
    • /
    • 2018
  • 플립러닝을 기반으로 학부중심 학사 구조가 4차 산업혁명시대 대학교육의 변화를 통해 학생들은 문제 해결능력을 기반으로 가치창출 능력을 배양하는 필수화 과정이 되어야 한다. 이를 위해 창안된 프로젝트기반 학습법(Project Based Learning)과 MOOC를 결합한 거꾸로 학습법(Flipped Learning)을 과감하게 도입 및 확산하고, 날로 고도화되어 가는 AI기반의 학습컨설팅(E-Advisor)의 도입과 확산에 따라 4차 산업혁명에 부합하는 "개인 맞춤교육"으로의 전환이 이루어져야 한다.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

AI 교육을 위한 전공별 맞춤형(RAS) 교육과정 개발연구 (A Research on the Development of Customized Curriculum (RAS) for Each Major for AI Education)

  • 백란
    • 공학교육연구
    • /
    • 제25권5호
    • /
    • pp.44-54
    • /
    • 2022
  • The purpose of this study is to effectively implement the artificial intelligence education required in the digital transformation era. As we enter the era of the 4th industrial revolution, the demand for a great digital transformation in industry is essential, and the nurturing of manpower is presented as an indispensable relationship in the industrial field based on it. The integration of various new technologies that have emerged from the era of the 4th industrial revolution has the greatest purpose in realizing artificial intelligence technology. As the importance of digital competency in the top curriculum reorganization has been highlighted, artificial intelligence education is necessary even in the curriculum reorganization in 2022, and there is a demand in the educational field that it should be converted into a mandatory education in middle and high schools. Artificial intelligence education according to the demands of the times is to develop an artificial intelligence curriculum in universities by reestablishing systematic artificial intelligence education in universities, setting educational goals, and presenting the goals of artificial intelligence education by major. The main direction of this study is to present the relationship between artificial intelligence and each major in university education, develop a curriculum based on artificial intelligence for each major, and link artificial intelligence software for AI education customized for each major. We would like to present a process that can measure the learning outcomes of AI education.

Autonomous Vehicles as Safety and Security Agents in Real-Life Environments

  • Al-Absi, Ahmed Abdulhakim
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.7-12
    • /
    • 2022
  • Safety and security are the topmost priority in every environment. With the aid of Artificial Intelligence (AI), many objects are becoming more intelligent, conscious, and curious of their surroundings. The recent scientific breakthroughs in autonomous vehicular designs and development; powered by AI, network of sensors and the rapid increase of Internet of Things (IoTs) could be utilized in maintaining safety and security in our environments. AI based on deep learning architectures and models, such as Deep Neural Networks (DNNs), is being applied worldwide in the automotive design fields like computer vision, natural language processing, sensor fusion, object recognition and autonomous driving projects. These features are well known for their identification, detective and tracking abilities. With the embedment of sensors, cameras, GPS, RADAR, LIDAR, and on-board computers in many of these autonomous vehicles being developed, these vehicles can properly map their positions and proximity to everything around them. In this paper, we explored in detail several ways in which these enormous features embedded in these autonomous vehicles, such as the network of sensors fusion, computer vision and natural image processing, natural language processing, and activity aware capabilities of these automobiles, could be tapped and utilized in safeguarding our lives and environment.

Research on the evaluation model for the impact of AI services

  • Soonduck Yoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.191-202
    • /
    • 2023
  • This study aims to propose a framework for evaluating the impact of artificial intelligence (AI) services, based on the concept of AI service impact. It also suggests a model for evaluating this impact and identifies relevant factors and measurement approaches for each item of the model. The study classifies the impact of AI services into five categories: ethics, safety and reliability, compliance, user rights, and environmental friendliness. It discusses these five categories from a broad perspective and provides 21 detailed factors for evaluating each category. In terms of ethics, the study introduces three additional factors-accessibility, openness, and fairness-to the ten items initially developed by KISDI. In the safety and reliability category, the study excludes factors such as dependability, policy, compliance, and awareness improvement as they can be better addressed from a technical perspective. The compliance category includes factors such as human rights protection, privacy protection, non-infringement, publicness, accountability, safety, transparency, policy compliance, and explainability.For the user rights category, the study excludes factors such as publicness, data management, policy compliance, awareness improvement, recoverability, openness, and accuracy. The environmental friendliness category encompasses diversity, publicness, dependability, transparency, awareness improvement, recoverability, and openness.This study lays the foundation for further related research and contributes to the establishment of relevant policies by establishing a model for evaluating the impact of AI services. Future research is required to assess the validity of the developed indicators and provide specific evaluation items for practical use, based on expert evaluations.

Toward accurate synchronic magnetic field maps using solar frontside and AI-generated farside data

  • Jeong, Hyun-Jin;Moon, Yong-Jae;Park, Eunsu
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.41.3-42
    • /
    • 2021
  • Conventional global magnetic field maps, such as daily updated synoptic maps, have been constructed by merging together a series of observations from the Earth's viewing direction taken over a 27-day solar rotation period to represent the full surface of the Sun. It has limitations to predict real-time farside magnetic fields, especially for rapid changes in magnetic fields by flux emergence or disappearance. Here, we construct accurate synchronic magnetic field maps using frontside and AI-generated farside data. To generate the farside data, we train and evaluate our deep learning model with frontside SDO observations. We use an improved version of Pix2PixHD with a new objective function and a new configuration of the model input data. We compute correlation coefficients between real magnetograms and AI-generated ones for test data sets. Then we demonstrate that our model better generate magnetic field distributions than before. We compare AI-generated farside data with those predicted by the magnetic flux transport model. Finally, we assimilate our AI-generated farside magnetograms into the flux transport model and show several successive global magnetic field data from our new methodology.

  • PDF

Over the Rainbow: How to Fly over with ChatGPT in Tourism

  • Taekyung Kim
    • Journal of Smart Tourism
    • /
    • 제3권1호
    • /
    • pp.41-47
    • /
    • 2023
  • Tourism and hospitality have encountered significant changes in recent years as a result of the rapid development of information technology (IT). Customers now expect more expedient services and customized travel experiences, which has intensified competition among service providers. To meet these demands, businesses have adopted sophisticated IT applications such as ChatGPT, which enables real-time interaction with consumers and provides recommendations based on their preferences. This paper focuses on the AI support-prompt middleware system, which functions as a mediator between generative AI and human users, and discusses two operational rules associated with it. The first rule is the Information Processing Rule, which requires the middleware system to determine appropriate responses based on the context of the conversation using techniques for natural language processing. The second rule is the Information Presentation Rule, which requires the middleware system to choose an appropriate language style and conversational attitude based on the gravity of the topic or the conversational context. These rules are essential for guaranteeing that the middleware system can fathom user intent and respond appropriately in various conversational contexts. This study contributes to the planning and analysis of service design by deriving design rules for middleware systems to incorporate artificial intelligence into tourism services. By comprehending the operation of AI support-prompt middleware systems, service providers can design more effective and efficient AI-driven tourism services, thereby improving the customer experience and obtaining a market advantage.

Using topic modeling-based network visualization and generative AI in online discussions, how learners' perception of usability affects their reflection on feedback

  • Mingyeong JANG;Hyeonwoo LEE
    • Educational Technology International
    • /
    • 제25권1호
    • /
    • pp.1-25
    • /
    • 2024
  • This study aims to analyze the impact of learners' usability perceptions of topic modeling-based visual feedback and generative AI interpretation on reflection levels in online discussions. To achieve this, we asked 17 students in the Department of Korean language education to conduct an online discussion. Text data generated from online discussions were analyzed using LDA topic modeling to extract five clusters of related words, or topics. These topics were then visualized in a network format, and interpretive feedback was constructed through generative AI. The feedback was presented on a website and rated highly for usability, with learners valuing its information usefulness. Furthermore, an analysis using the non-parametric Mann-Whitney U test based on levels of usability perception revealed that the group with higher perceived usability demonstrated higher levels of reflection. This suggests that well-designed and user-friendly visual feedback can significantly promote deeper reflection and engagement in online discussions. The integration of topic modeling and generative AI can enhance visual feedback in online discussions, reinforcing the efficacy of such feedback in learning. The research highlights the educational significance of these design strategies and clears a path for innovation.

E-Healthcare와 AI & IoT 분야의 위성항법시스템 최신 활용 동향 (Trends in Utilization of GNSS for E-Healthcare and AI & IoT Field)

  • 김태윤;박희선;임종원;황석승
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.15-23
    • /
    • 2024
  • One of the core keywords in the fourth industrial revolution is convergence, and the convergence of the production, distribution, and consumption processes of services is particularly important. The convergence of user services is underway in various industrial fields including mobile communications, healthcare, mobility, artificial intelligence, etc. In order to offer these converged services efficiently, it is necessary to provide accurate user-centric location information, which can be obtained by employing the global navigation satellite system (GNSS). In addition, as we have entered the post-COVID era, the demand for various fields such as a healthcare, customized tourism services, and aviation services based on accurate location information is exploding. In this paper, we present the results of a case study on the current research trends of GNSS used in telemedicine services and AI & IoT fields, and also analyze these results.

Examining the Adoption of AI based Banking Chatbots: A Task Technology Fit and Network Externalities Perspective

  • Eden Samuel Parthiban;Mohd. Adil
    • Asia pacific journal of information systems
    • /
    • 제33권3호
    • /
    • pp.652-676
    • /
    • 2023
  • The objective of this study is to provide a deeper understanding of the factors that lead to the development and adoption of AI-based chatbots. We analyze the structural relationship between the organizational (externalities), systematic (fit), and the consumer-related (psychological) factors and their role in the adoption of AI-based chatbots. Founded on the theories of task-technology fit and network externalities, we present a conceptual model overlooking common perception-based theories (e.g., Technology Acceptance Model). We collected 380 responses from Indian banking consumers to test the model using the PLS-SEM method. Interestingly, the findings present a positive impact of all factors on consumers' intention to adopt AI-based chatbots. However, the interplays between these factors provide a mixed perspective for literature. Apart from employing a combination of factors that have been used to study technology adoption, our study explores the importance of externalities and their relationship with fit factors, a unique outlook often overlooked by prior research. Moreover, we offer a clear understanding of latent variables such as trust, and the intricacies of their interplays in a novel context. Thereby, the study offers implications for literature and practice, followed by future research directions.