• Title/Summary/Keyword: AI Department

Search Result 2,083, Processing Time 0.027 seconds

Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device (굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발)

  • Baek, Hee Seung;Shin, Jong Ho;Kim, Seong Joon
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.

Utilization of Artificial Intelligence in the Sports Field (스포츠 현장에서 인공지능 활용 방안)

  • Yang, Jeong Ok;Lee, Jook Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.3
    • /
    • pp.69-79
    • /
    • 2022
  • Objective: The purpose of this study is to analyze trends related to sports and artificial intelligence (AI) to understand the trends and how they change according to time, and to establish methods to apply AI in sports. Both macro and micro perspectives related to sports utilization of AI were analyzed. Method: In this study, after analyzing and discussing various information related to the use of artificial intelligence in the sports through a search of academic journals, papers, books, and websites published recently at nationally and internationally, the application plan of artificial intelligence in the sports field was presented. Results: 1) Motion analysis technology using artificial intelligence is effective in sports where posture is important, and if it provides systematic feedback and training methods, it can help improve performance. 2) The introduction of a sports referee judgment system using artificial intelligence is expected to improve performance by restoring factual judgment and objective fairness in sports games. 3) Artificial intelligence will provide coaching staff and players with a variety of information to help improve performance through systematic coaching and improving feedback and enhanced training methods. 4) It is judged that artificial intelligence-related to sports ethics, sports ICT, sports marketing, sports prediction, etc. We think that based on the current AI research trends will have a positive impact on all sports-related areas, helping to revitalize sports. Conclusion: Motion analysis technology using artificial intelligence, sports referee judgment system, coaching using artificial intelligence, and artificial intelligence are judged to have a positive effect on all sports-related areas and help revitalize sports.

A Systematic Mapping Study on Artificial Intelligence Tools Used in Video Editing

  • Bieda, Igor;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2022
  • From the past two eras, artificial intelligence has gained the attention of researchers of all research areas. Video editing is a task in the list that starts leveraging the blessing of Artificial Intelligence (AI). Since AI promises to make technology better use of human life although video editing technology is not new yet it is adopting new technologies like AI to become more powerful and sophisticated for video editors as well as users. Like other technologies, video editing will also be facilitated by the majestic power of AI in near future. There has been a lot of research that uses AI in video editing, yet there is no comprehensive literature review that systematically finds all of this work on one page so that new researchers can find research gaps in that area. In this research we conducted a statically approach called, systematic mapping study, to find answers to pre-proposed research questions. The aim and objective of this research are to find research gaps in our topic under discussion.

An Architecture Model on Artificial Intelligence for Ground Tactical Echelons (지상 전술 제대 인공지능 아키텍처 모델)

  • Kim, Jun Sung;Park, Sang Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.513-521
    • /
    • 2022
  • This study deals with an AI architecture model for collecting battlefield data using the tactical C4I system. Based on this model, the artificial staff can be utilized in tactical echelon. In the current structure of the Army's tactical C4I system, Servers are operated by brigade level and above and divided into an active and a standby server. In this C4I system structure, the AI server must also be installed in each unit and must be switched when the C4I server is switched. The tactical C4I system operates a server(DB) for each unit, so data matching is partially delayed or some data is not matched in the inter-working process between servers. To solve these issues, this study presents an operation concept so that all of alternate server can be integrated based on virtualization technology, which is used as an source data for AI Meta DB. In doing so, this study can provide criteria for the AI architectural model of the ground tactical echelon.

Analysis of Domestic Research Trends on Artificial Intelligence-Based Prognostics and Health Management (인공지능 기반 건전성 예측 및 관리에 관한 국내 연구 동향 분석)

  • Ye-Eun Jeong;Yong Soo Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.223-245
    • /
    • 2023
  • Purpose: This study aim to identify the trends in AI-based PHM technology that can enhance reliability and minimize costs. Furthermore, this research provides valuable guidelines for future studies in various industries Methods: In this study, I collected and selected AI-based PHM studies, established classification criteria, and analyzed research trends based on classified fields and techniques. Results: Analysis of 125 domestic studies revealed a greater emphasis on machinery in both diagnosis and prognosis, with more papers dedicated to diagnosis. various algorithms were employed, including CNN for image diagnosis and frequency analysis for signal data. LSTM was commonly used in prognosis for predicting failures and remaining life. Different industries, data types, and objectives required diverse AI techniques, with GAN used for data augmentation and GA for feature extraction. Conclusion: As studies on AI-based PHM continue to grow, selecting appropriate algorithms for data types and analysis purposes is essential. Thus, analyzing research trends in AI-based PHM is crucial for its rapid development.

A Study on the Feasibility of IoT and AI-based elderly care system application

  • KANG, Minsoo;KIM, Baek Seob;SEO, Jin Won;KIM, Kyu Ho
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.15-21
    • /
    • 2021
  • This paper conducted a feasibility study by applying an Internet of Things and Artificial intelligence-based management system for the elderly living alone in an aging society. The number of single-person families over the age of 50 is expected to increase, and problems such as health, safety, and loneliness may occur due to aging. Therefore, by establishing an IoT-based care system for the elderly living alone, a stable service was developed through securing a rapid response system for the elderly living alone and automatically reporting 119. The participants of the demonstration test were subjects under the jurisdiction of the "Seongnam Senior Complex," and the data collection rate between the IoT sensor and the emergency safety gateway was high. During the demonstration period, as a result of evaluating the satisfaction of the IoT-based care system for the elderly living alone, 90 points were achieved. We are currently in the COVID-19 situation. Therefore, the number of elderly living alone is continuously increasing, and the number of people who cannot benefit from care services will continue to occur. Also, even if the COVID-19 situation is over, the epidemic will happen again. So the care system is essential. The elderly care system developed in this way will provide safety management services based on artificial intelligence-based activity pattern analysis, improving the quality of in-house safety services.

Directional Predictive Analysis of Pre-trained Language Models in Relation Extraction (관계 추출에서 사전학습 언어모델의 방향성 예측 분석)

  • Hur, Yuna;Oh, Dongsuk;Kang, Myunghoon;Son, Suhyune;So, Aram;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.482-485
    • /
    • 2021
  • 최근 지식 그래프를 확장하기 위해 많은 연구가 진행되고 있다. 지식 그래프를 확장하기 위해서는 relation을 기준으로 entity의 방향성을 고려하는 것이 매우 중요하다. 지식 그래프를 확장하기 위한 대표적인 연구인 관계 추출은 문장과 2개의 entity가 주어졌을 때 relation을 예측한다. 최근 사전학습 언어모델을 적용하여 관계 추출에서 높은 성능을 보이고 있지만, entity에 대한 방향성을 고려하여 relation을 예측하는지 알 수 없다. 본 논문에서는 관계 추출에서 entity의 방향성을 고려하여 relation을 예측하는지 실험하기 위해 문장 수준의 Adversarial Attack과 단어 수준의 Sequence Labeling을 적용하였다. 또한 관계 추출에서 문장에 대한 이해를 높이기 위해 BERT모델을 적용하여 실험을 진행하였다. 실험 결과 관계 추출에서 entity에 대한 방향성을 고려하지 않음을 확인하였다.

  • PDF

A study on the factors influencing the data collection performance of smart buoys (스마트 항로표지의 데이터 수집 성능에 영향을 미치는 요인에 관한 연구)

  • Ho-Joon Kim;Min-Kyu Kim;Nam-Yong Lee;Chul-Soo Kim;Sangmun Shin;Se-woong Oh;Jin-Hong Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.60-62
    • /
    • 2021
  • 항로표지는 해상상황 정보를 수집하고 선박들의 항해에 안전을 도모하기 위해 설치 및 운용되고 있다. 관련해 개별 지방청에서 운영되는 데이터를 빅데이터 형태로 활용하고자 하는 경우 수집된 데이터의 품질에 대한 평가가 이루어져야 한다. 본 논문에서는 수집된 항로표지 데이터의 누락 정보를 중심으로 데이터 수집에 있어 장애 생성의 주된 원인을 찾고자 하였다. 수집된 데이터의 분석 결과 기상악화와 표지의 전압이 하락한 날에 데이터 결측 발생률이 톺음을 확인할 수 있었다. 이를 통해 기상 상황, 표지의 전압 상태 그리고 수집된 데이터 개수의 비교를 통해 기상악화가 영향을 미쳤을 수 있음을 확인하였다.

  • PDF

KFREB: Korean Fictional Retrieval-based Evaluation Benchmark for Generative Large Language Models (KFREB: 생성형 한국어 대규모 언어 모델의 검색 기반 생성 평가 데이터셋)

  • Jungseob Lee;Junyoung Son;Taemin Lee;Chanjun Park;Myunghoon Kang;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.9-13
    • /
    • 2023
  • 본 논문에서는 대규모 언어모델의 검색 기반 답변 생성능력을 평가하는 새로운 한국어 벤치마크, KFREB(Korean Fictional Retrieval Evaluation Benchmark)를 제안한다. KFREB는 모델이 사전학습 되지 않은 허구의 정보를 바탕으로 검색 기반 답변 생성 능력을 평가함으로써, 기존의 대규모 언어모델이 사전학습에서 보았던 사실을 반영하여 생성하는 답변이 실제 검색 기반 답변 시스템에서의 능력을 제대로 평가할 수 없다는 문제를 해결하고자 한다. 제안된 KFREB는 검색기반 대규모 언어모델의 실제 서비스 케이스를 고려하여 장문 문서, 두 개의 정답을 포함한 골드 문서, 한 개의 골드 문서와 유사 방해 문서 키워드 유무, 그리고 문서 간 상호 참조를 요구하는 상호참조 멀티홉 리즈닝 경우 등에 대한 평가 케이스를 제공하며, 이를 통해 대규모 언어모델의 적절한 선택과 실제 서비스 활용에 대한 인사이트를 제공할 수 있을 것이다.

  • PDF

Effects of a short period nutrition education program on the dietary behavior and the dietary intake of female college students with the different adiposity index (단기간의 영양교육이 비만도가 다른 여대생들의 식생활 태도와 영양소 섭취에 미치는 영향)

  • Kwon, Jong-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.8 no.4
    • /
    • pp.321-330
    • /
    • 1993
  • Effects of a short-period nutrition education program on the dietary behavior and the dietary intake were investigated in sixty nine healthy female college students. Questionnaires for general health information, character type, dietary behavior and dietary intake were answered by the subjects. All the subjects were participated in the nutrition education program which was carried out twice during the study. Subjects were divided into three groups according to their adiposity indices (AI), which are low AI (33 subjects), normal AI (31), and high AI (5). In the normal and the high AI group, the nutrition education program appeared to influence the dietary behaviors of the subjects significantly. However the program did not significantly influence the dietary intake of three groups, except PUFA ratio. It appears that a longer-period nutrition education program is required for influencing both the dietary behavior and the dietary intake of the subjects.

  • PDF