• Title/Summary/Keyword: AI Company

Search Result 104, Processing Time 0.019 seconds

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

A Study on the Costume of The Korean-Chinese Women in Yanbian, China - Focusing on 1990′s -

  • Zhang, Shun-Ai;Kim, Jin-Goo
    • The International Journal of Costume Culture
    • /
    • v.4 no.1
    • /
    • pp.25-33
    • /
    • 2001
  • This study is to analyze Korean-Chinese women's Costume in Yabian with factors such as reform opening-up, economic growth, change of social values, development of technology, more education opportunities and influence of mass media. It divides the 1990's into two halves. Photos, interview, observation and relevant literature were used for this study. Even though economy grew rapidly, they needed to purchase daily goods other than clothes. In a way that they preferred practicality, it showed somewhat it was still developing. The trend in the first half of the 1990's was characterized : first, Synthetic or artificial fibers and ready-made suits were popular ; second, there still remained the men's style ; third, they wore Tanrikoo(彈力袴), Tisingkoo(體型袴), Jiaotakoo(脚袴) because of its properties of activeness and comfort ; fourth, shoulders looked ore prominent with pads as they were used in Chungsanfoo(中山服) ; fifth, clothes in grey and dark blue was in fashion ; sixth, they wore hand-made knit vests and sweaters and often mountain-climbing gears for its light and warm quality ; seventh, along with opening-up, various materials and colorful clothes were in style, which satisfied women's desire for beauty. They decorated Hanbok(韓服), using sleeves with colors, golden ornaments, flower patterns embroidery, materials of different color in collar and tie and dyes of sleeves and skirts. In the first half of the 1990's when the opening-up was beginning, there were diverse styles and colors in fashion, yet not close to good quality. As the economy grew, the second half of the 1990's was characterized by good palate, individuality, favouritism on foreign goods, rapid change of fashion. For instance, fur coat and woolen fabric were favored. Economic growth led to abundance of cloth, dyes and decorative materials. In addition, people possessed more clothing and it was possible for them to wear both Hanbok and wedding dress in wedding ceremony. People placed their standards on competency and financial ability rather than ideology. Worship disappeared and individuality arose. Therefore, apparel functioned not only as protection but as suits with aesthetic purpose. This resulted in introduction of bold style, imitation of western countries and extension of use of Hanbok. With the help of mass media, transportation, telecommunication, contact with Korean company and civilians, Korean and western cultures, through Korea, were accepted. Change in structure of economic status caused excessive spending and more educational opportunities that enabled people to accept foreign culture quickly. Values moved onto new, beautiful and better characteristics. it was possible to have suits ready-made due to improvement of mass production and cotten, wool, linen, silk became popular owing to technology. New technology, the bases of mass consumption, increased possession of clothing and accelerated change of fashion. In summary, women's Costume in Yanbian were affected by the factors in economy, politics, culture contact as well as change of society and technology.

  • PDF

Research on APC Verification for Disaster Victims and Vulnerable Facilities (재난약자 및 취약시설에 대한 APC실증에 관한 연구)

  • Seungyong Kim;Incheol Hwang;Dongsik Kim;Jungjae Shin;Seunggap Yong
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.199-205
    • /
    • 2024
  • Purpose: This study aims to improve the recognition rate of Auto People Counting (APC) in accurately identifying and providing information on remaining evacuees in disaster-vulnerable facilities such as nursing homes to firefighting and other response agencies in the event of a disaster. Methods: In this study, a baseline model was established using CNN (Convolutional Neural Network) models to improve the algorithm for recognizing images of incoming and outgoing individuals through cameras installed in actual disaster-vulnerable facilities operating APC systems. Various algorithms were analyzed, and the top seven candidates were selected. The research was conducted by utilizing transfer learning models to select the optimal algorithm with the best performance. Results: Experiment results confirmed the precision and recall of Densenet201 and Resnet152v2 models, which exhibited the best performance in terms of time and accuracy. It was observed that both models demonstrated 100% accuracy for all labels, with Densenet201 model showing superior performance. Conclusion: The optimal algorithm applicable to APC among various artificial intelligence algorithms was selected. Further research on algorithm analysis and learning is required to accurately identify the incoming and outgoing individuals in disaster-vulnerable facilities in various disaster situations such as emergencies in the future.