• Title/Summary/Keyword: AI 음성인식 서비스

Search Result 36, Processing Time 0.029 seconds

Development of intelligent IoT control-related AI distributed speech recognition module (지능형 IoT 관제 연계형 AI 분산음성인식 모듈개발)

  • Bae, Gi-Tae;Lee, Hee-Soo;Bae, Su-Bin
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.1212-1215
    • /
    • 2017
  • 현재 출시되는 AI스피커들의 기능들을 재현하면서 문제점을 찾아서 보완하고 특히 우리나라 1인 가구의 급격한 증가로 인한 다양한 사회 문제들의 해소 방안으로 표정인식을 통해 먼저 사용자에게 다가가는 감정적인 대화가 가능한 인공지능 서비스와 인터넷 환경에 무관한 홈 IoT 제어 그리고 시각데이터 제공이 가능한 다중 AI 스피커를 제작 하였다.

Voice Interactions with A. I. Agent : Analysis of Domestic and Overseas IT Companies (A.I.에이전트와의 보이스 인터랙션 : 국내외 IT회사 사례연구)

  • Lee, Seo-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.15-29
    • /
    • 2021
  • Many countries and companies are pursuing and developing Artificial intelligence as it is the core technology of the 4th industrial revolution. Global IT companies such as Apple, Microsoft, Amazon, Google and Samsung have all released their own AI assistant hardware products, hoping to increase customer loyalty and capture market share. Competition within the industry for AI agent is intense. AI assistant products that command the biggest market shares and customer loyalty have a higher chance of becoming the industry standard. This study analyzed the current status of major overseas and domestic IT companies in the field of artificial intelligence, and suggested future strategic directions for voice UI technology development and user satisfaction. In terms of B2B technology, it is recommended that IT companies use cloud computing to store big data, innovative artificial intelligence technologies and natural language technologies. Offering voice recognition technologies on the cloud enables smaller companies to take advantage of such technologies at considerably less expense. Companies also consider using GPT-3(Generative Pre-trained Transformer 3) an open source artificial intelligence language processing software that can generate very natural human-like interactions and high levels of user satisfaction. There is a need to increase usefulness and usability to enhance user satisfaction. This study has practical and theoretical implications for industry and academia.

Development of AI-based Real Time Agent Advisor System on Call Center - Focused on N Bank Call Center (AI기반 콜센터 실시간 상담 도우미 시스템 개발 - N은행 콜센터 사례를 중심으로)

  • Ryu, Ki-Dong;Park, Jong-Pil;Kim, Young-min;Lee, Dong-Hoon;Kim, Woo-Je
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.750-762
    • /
    • 2019
  • The importance of the call center as a contact point for the enterprise is growing. However, call centers have difficulty with their operating agents due to the agents' lack of knowledge and owing to frequent agent turnover due to downturns in the business, which causes deterioration in the quality of customer service. Therefore, through an N-bank call center case study, we developed a system to reduce the burden of keeping up business knowledge and to improve customer service quality. It is a "real-time agent advisor" system that provides agents with answers to customer questions in real time by combining AI technology for speech recognition, natural language processing, and questions & answers for existing call center information systems, such as a private branch exchange (PBX) and computer telephony integration (CTI). As a result of the case study, we confirmed that the speech recognition system for real-time call analysis and the corpus construction method improves the natural speech processing performance of the query response system. Especially with name entity recognition (NER), the accuracy of the corpus learning improved by 31%. Also, after applying the agent advisor system, the positive feedback rate of agents about the answers from the agent advisor was 93.1%, which proved the system is helpful to the agents.

Perception of Virtual Assistant and Smart Speaker: Semantic Network Analysis and Sentiment Analysis (가상 비서와 스마트 스피커에 대한 인식과 기대: 의미 연결망 분석과 감성분석을 중심으로)

  • Park, Hohyun;Kim, Jang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.213-216
    • /
    • 2018
  • As the advantages of smart devices based on artificial intelligence and voice recognition become more prominent, Virtual Assistant is gaining popularity. Virtual Assistant provides a user experience through smart speakers and is valued as the most user friendly IoT device by consumers. The purpose of this study is to investigate whether there are differences in people's perception of the key virtual assistant brand voice recognition. We collected tweets that included six keyword form three companies that provide Virtual Assistant services. The authors conducted semantic network analysis for the collected datasets and analyzed the feelings of people through sentiment analysis. The result shows that many people have a different perception and mainly about the functions and services provided by the Virtual Assistant and the expectation and usability of the services. Also, people responded positively to most keywords.

  • PDF

Audio Guidance Application For Commodity Prices Using Public Data And AI Chatbot (공공데이터와 AI챗봇을 이용한 물가 음성안내 앱 서비스)

  • Lee, Jae-Seon;Kang, Kyeong-Don;Park, Tae-Yok;Jung, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.251-253
    • /
    • 2018
  • As the prices of agricultural, fishery, and dairy products have been fluctuating due to recent instability on commodity prices, so consumers have been more inclined to make purchase without specific criteria by relying on marketing or their personal experiences and senses of market. The core function of this application is precisely and conveniently telling the consumption index to consumers who are waved by unstable commodity prices by helping users to easily understand the price index of agricultural, fishery, and dairy products in real time using public data. And, it also includes the AI Chatbot and voice recognition function, and meets the convenience of natural language processing and hands-free etc..

  • PDF

AI Advisor for Response of Disaster Safety in Risk Society (위험사회 재난 안전 분야 대응을 위한 AI 조력자)

  • Lee, Yong-Hak;Kang, Yunhee;Lee, Min-Ho;Park, Seong-Ho;Kang, Myung-Ju
    • Journal of Platform Technology
    • /
    • v.8 no.3
    • /
    • pp.22-29
    • /
    • 2020
  • The 4th industrial revolution is progressing by country as a mega trend that leads various technological convergence directions in the social and economic fields from the initial simple manufacturing innovation. The epidemic of infectious diseases such as COVID-19 is shifting digital-centered non-face-to-face business from economic operation, and the use of AI and big data technology for personalized services is essential to spread online. In this paper, we analyze cases focusing on the application of artificial intelligence technology, which is a key technology for the effective implementation of the digital new deal promoted by the government, as well as the major technological characteristics of the 4th industrial revolution and describe the use cases in the field of disaster response. As a disaster response use case, AI assistants suggest appropriate countermeasures according to the status of the reporter in an emergency call. To this end, AI assistants provide speech recognition data-based analysis and disaster classification of converted text for adaptive response.

  • PDF

Industrial Kiosk Using AI (IOT를 이용한 산업용 AI 키오스크)

  • Yun-Jin Park;Da-Yeon Choi;Su-Yeong Kim;Ji-Won Jang;Jung-Hyun Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1031-1032
    • /
    • 2023
  • 급속한 디지털 기술 발전에 따른 비대면 서비스의 증가로 고령층의 정보 접근성 문제가 대두되었다. 본 연구는 고령층의 편리한 키오스크 사용을 위해 AI 기술과 사용자 인터페이스를 결합한 '시니어 키오스크'를 제안한다. '시니어 키오스크'는 딥러닝 기술을 이용한 연령대 인식을 바탕으로 고령층을 분류하고 고령층 소비자에게 직관적이고 가독성 높은 시니어 UI를 제공한다. 또한, 자연어처리 기술을 활용한 음성 주문을 통해 편리한 주문을 돕는다. 본 연구에서 제안된 '시니어 키오스크'를 통해 고령층의 편리성 증진과 정보격차 해소를 달성할 수 있다.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

Improved Transformer Model for Multimodal Fashion Recommendation Conversation System (멀티모달 패션 추천 대화 시스템을 위한 개선된 트랜스포머 모델)

  • Park, Yeong Joon;Jo, Byeong Cheol;Lee, Kyoung Uk;Kim, Kyung Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • Recently, chatbots have been applied in various fields and have shown good results, and many attempts to use chatbots in shopping mall product recommendation services are being conducted on e-commerce platforms. In this paper, for a conversation system that recommends a fashion that a user wants based on conversation between the user and the system and fashion image information, a transformer model that is currently performing well in various AI fields such as natural language processing, voice recognition, and image recognition. We propose a multimodal-based improved transformer model that is improved to increase the accuracy of recommendation by using dialogue (text) and fashion (image) information together for data preprocessing and data representation. We also propose a method to improve accuracy through data improvement by analyzing the data. The proposed system has a recommendation accuracy score of 0.6563 WKT (Weighted Kendall's tau), which significantly improved the existing system's 0.3372 WKT by 0.3191 WKT or more.

Research on Generative AI for Korean Multi-Modal Montage App (한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구)

  • Lim, Jeounghyun;Cha, Kyung-Ae;Koh, Jaepil;Hong, Won-Kee
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Multi-modal generation is the process of generating results based on a variety of information, such as text, images, and audio. With the rapid development of AI technology, there is a growing number of multi-modal based systems that synthesize different types of data to produce results. In this paper, we present an AI system that uses speech and text recognition to describe a person and generate a montage image. While the existing montage generation technology is based on the appearance of Westerners, the montage generation system developed in this paper learns a model based on Korean facial features. Therefore, it is possible to create more accurate and effective Korean montage images based on multi-modal voice and text specific to Korean. Since the developed montage generation app can be utilized as a draft montage, it can dramatically reduce the manual labor of existing montage production personnel. For this purpose, we utilized persona-based virtual person montage data provided by the AI-Hub of the National Information Society Agency. AI-Hub is an AI integration platform aimed at providing a one-stop service by building artificial intelligence learning data necessary for the development of AI technology and services. The image generation system was implemented using VQGAN, a deep learning model used to generate high-resolution images, and the KoDALLE model, a Korean-based image generation model. It can be confirmed that the learned AI model creates a montage image of a face that is very similar to what was described using voice and text. To verify the practicality of the developed montage generation app, 10 testers used it and more than 70% responded that they were satisfied. The montage generator can be used in various fields, such as criminal detection, to describe and image facial features.