Demands for tangible contents using VR/AR technologies are much bigger as contactless services such as sports, physical activity, and fitness are expanded after COVID-19. A variety of technologies such as an offer and analysis of tangible data through a sensor technology, users' physical movement sensing through a motion recognition sensor, a real-time measurement of a physical skeleton point a multiple access to a real-time video, and AI training are being utilized as main technologies. This case study utilized motion recognition technologies as the study on tangible contents necessary for indoor-based physical education, sports, and fitness in the contactless environment and suggested cases to develop the physical measurement contents by design approach for the measurement assessment necessary for the development in tangible contents. The research established lists of the measurement assessment based on professionals' consultations within the measurement assessment function through the test to plan tangible contents and developed tangible contents by reflecting them as assessment measurement elements of tangible contents. The research can be utilized as the design approach of industrial companies which intend to develop tangible contents as well as reference cases of the research on contactless tangible contents for the sports and physical education.
Kim, Jeongsoo;Park, Sangmi;Hong, Changhee;Park, Seunghwa;Lee, Jaewook
Journal of the Society of Disaster Information
/
v.18
no.2
/
pp.364-373
/
2022
Purpose: The purpose of this paper is to develope smoke detection using AI model for detecting the initial fire in underground utility tunnels using CCTV Method: To improve detection performance of smoke which is high irregular, a deep learning model for fire detection was trained to optimize smoke detection. Also, several approaches such as dataset cleansing and gradient exploding release were applied to enhance model, and compared with results of those. Result: Results show the proposed approaches can improve the model performance, and the final model has good prediction capability according to several indexes such as mAP. However, the final model has low false negative but high false positive capacities. Conclusion: The present model can apply to smoke detection in underground utility tunnel, fixing the defect by linking between the model and the utility tunnel control system.
Journal of the Korean Society for Library and Information Science
/
v.57
no.4
/
pp.333-351
/
2023
This study investigates user behavior in library spaces through the lens of AI camera analytics. By leveraging the face recognition and tracking capabilities of AI cameras, we accurately identified the gender and age of visitors and meticulously collected video data to track their movements. Our findings revealed that female users slightly outnumbered male users and the dominant age group was individuals in their 30s. User visits peaked between Tuesday to Friday, with the highest footfall recorded between 14:00 and 15:00 pm, while visits decreased over the weekend. Most visitors utilized one or two specific spaces, frequently consulting the information desk for inquiries, checking out/returning items, or using the rest area for relaxation. The library stacks were used approximately twice as much as they were avoided. The most frequented subject areas were Philosophy(100), Religion(200), Social Sciences(300), Science(400), Technology(500), and Literature(800), with Literature(800) and Religion(200) displaying the most intersections with other areas. By categorizing users into five clusters based on space utilization patterns, we discerned varying objectives and subject interests, providing insights for future library service enhancements. Moreover, the study underscores the need to address the associated costs and privacy concerns when considering the broader application of AI camera analytics in library settings.
인공지능 시대에 들어서면서 개인 맞춤형 환경을 제공하기 위하여 사람의 감정을 인식하고 교감하는 기술이 많이 발전되고 있다. 사람의 감정을 인식하는 방법으로는 얼굴, 음성, 신체 동작, 생체 신호 등이 있지만 이 중 가장 직관적이면서도 쉽게 접할 수 있는 것은 표정이다. 따라서, 본 논문에서는 정확도 높은 얼굴 감정 식별을 위해서 Convolution Block Attention Module(CBAM)의 각 Gate와 Residual Block, Skip Connection을 이용한 Identity- CBAM Module을 제안한다. CBAM의 각 Gate와 Residual Block을 이용하여 각각의 표정에 대한 핵심 특징 정보들을 강조하여 Context 한 모델로 변화시켜주는 효과를 가지게 하였으며 Skip-Connection을 이용하여 기울기 소실 및 폭발에 강인하게 해주는 모듈을 제안한다. AI-HUB의 한국인 감정 인식을 위한 복합 영상 데이터 세트를 이용하여 총 6개의 클래스로 구분하였으며, F1-Score, Accuracy 기준으로 Identity-CBAM 모듈을 적용하였을 때 Vanilla ResNet50, ResNet101 대비 F1-Score 0.4~2.7%, Accuracy 0.18~2.03%의 성능 향상을 달성하였다. 또한, Guided Backpropagation과 Guided GradCam을 통해 시각화하였을 때 중요 특징점들을 더 세밀하게 표현하는 것을 확인하였다. 결과적으로 이미지 내 표정 분류 Task에서 Vanilla ResNet50, ResNet101을 사용하는 것보다 Identity-CBAM Module을 함께 사용하는 것이 더 적합함을 입증하였다.
Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.270-272
/
2020
본 논문은 코로나 방역의 자동화를 위한 Deep learning 기술 적용에 대해 연구한다. 2020년에 가장 중요한 이슈 중 하나인 COVID-19와 그 방역에 대해 많은 사람들이 IT분야에서 떠오르고 있는 artificial intelligence(AI)에 주목하고 있다. COVID-19로 인해 마스크 착용이 선택이 아닌 필수가 되며, 이를 통제하기 위한 모델이 필요한 상황이다. AI, 그 중에서도 Deep learning의 Object detection 기술을 일상생활 곳곳에 존재하는 영상 장치들에 적용하여 합리적인 비용으로 방역의 실시간 자동화를 구현할 수 있다. 이번 논문에서는 인터넷에 공개되어 있는 사물인식 오픈소스를 활용하여 이를 구현하기 위한 연구를 진행하였다. 또 이를 위한 Dataset 확보에 대한 조사도 진행하였다.
The identification and classification of victims in the county border area is one of the important issues. The personnel that can appear in the military border area are comprised of North Korean soldiers, U.S. soldiers, South Korean soldiers, and the general public, and are currently being confirmed through CCTV. They were classified into true categories and learned through transfer learning. The PyTorch machine learning library was used, and the dataset was utilized by crawling images corresponding to each item shared on Google. The experimental results show that each item is classified with an accuracy of 98.7500%. Future research will explore ways to distinguish more systematically and specifically by going beyond images and adding video or voice recognition.
With the recent development of device performance such as smartphones, cameras, and video cameras, it has become possible to obtain human biometric information from images and photos. A German hacker group obtained human iris information from high-definition photos and revealed hacking into iris scanners on smartphones. As high-quality images and photos can be obtained with such advanced devices, the need for a suitable security system is also emerging. Therefore, in this paper, we propose a method of automatically masking human iris information in images and photos using Haar Cascades and Blur models from openCV. It is a technology that automatically masks iris information by recognizing a person's eye in a photo or video and provides the result. If this technology is used in devices and applications such as smartphones and zoom, it is expected to provide better security services to users.
Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
KSCE Journal of Civil and Environmental Engineering Research
/
v.43
no.1
/
pp.99-107
/
2023
Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.40
no.5
/
pp.381-391
/
2022
This paper is intended to find one of the prevailing deep learning models that are a type of AI (Artificial Intelligence) that helps rapidly detect damaged buildings where disasters occur. The models selected are SSD-512, RetinaNet, and YOLOv3 which are widely used in object detection in recent years. These models are based on one-stage detector networks that are suitable for rapid object detection. These are often used for object detection due to their advantages in structure and high speed but not for damaged building detection in disaster management. In this study, we first trained each of the algorithms on xBD dataset that provides the post-disaster imagery with damage classification labels. Next, the three models are quantitatively evaluated with the mAP(mean Average Precision) and the FPS (Frames Per Second). The mAP of YOLOv3 is recorded at 34.39%, and the FPS reached 46. The mAP of RetinaNet recorded 36.06%, which is 1.67% higher than YOLOv3, but the FPS is one-third of YOLOv3. SSD-512 received significantly lower values than the results of YOLOv3 on two quantitative indicators. In a disaster situation, a rapid and precise investigation of damaged buildings is essential for effective disaster response. Accordingly, it is expected that the results obtained through this study can be effectively used for the rapid response in disaster management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.