• Title/Summary/Keyword: AI 영상인식

Search Result 111, Processing Time 0.02 seconds

A Case Study on Tangible Contents Development for Contactless Physical Education (비대면 체육 교육을 위한 실감 콘텐츠 개발 사례)

  • Eun, Kwang-Ha;Hur, Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • Demands for tangible contents using VR/AR technologies are much bigger as contactless services such as sports, physical activity, and fitness are expanded after COVID-19. A variety of technologies such as an offer and analysis of tangible data through a sensor technology, users' physical movement sensing through a motion recognition sensor, a real-time measurement of a physical skeleton point a multiple access to a real-time video, and AI training are being utilized as main technologies. This case study utilized motion recognition technologies as the study on tangible contents necessary for indoor-based physical education, sports, and fitness in the contactless environment and suggested cases to develop the physical measurement contents by design approach for the measurement assessment necessary for the development in tangible contents. The research established lists of the measurement assessment based on professionals' consultations within the measurement assessment function through the test to plan tangible contents and developed tangible contents by reflecting them as assessment measurement elements of tangible contents. The research can be utilized as the design approach of industrial companies which intend to develop tangible contents as well as reference cases of the research on contactless tangible contents for the sports and physical education.

Development of AI Detection Model based on CCTV Image for Underground Utility Tunnel (지하공동구의 CCTV 영상 기반 AI 연기 감지 모델 개발)

  • Kim, Jeongsoo;Park, Sangmi;Hong, Changhee;Park, Seunghwa;Lee, Jaewook
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.364-373
    • /
    • 2022
  • Purpose: The purpose of this paper is to develope smoke detection using AI model for detecting the initial fire in underground utility tunnels using CCTV Method: To improve detection performance of smoke which is high irregular, a deep learning model for fire detection was trained to optimize smoke detection. Also, several approaches such as dataset cleansing and gradient exploding release were applied to enhance model, and compared with results of those. Result: Results show the proposed approaches can improve the model performance, and the final model has good prediction capability according to several indexes such as mAP. However, the final model has low false negative but high false positive capacities. Conclusion: The present model can apply to smoke detection in underground utility tunnel, fixing the defect by linking between the model and the utility tunnel control system.

Analysis of Space Use Patterns of Public Library Users through AI Cameras (AI 카메라를 활용한 공공도서관 이용자의 공간이용행태 분석 연구)

  • Gyuhwan Kim;Do-Heon Jeong
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.4
    • /
    • pp.333-351
    • /
    • 2023
  • This study investigates user behavior in library spaces through the lens of AI camera analytics. By leveraging the face recognition and tracking capabilities of AI cameras, we accurately identified the gender and age of visitors and meticulously collected video data to track their movements. Our findings revealed that female users slightly outnumbered male users and the dominant age group was individuals in their 30s. User visits peaked between Tuesday to Friday, with the highest footfall recorded between 14:00 and 15:00 pm, while visits decreased over the weekend. Most visitors utilized one or two specific spaces, frequently consulting the information desk for inquiries, checking out/returning items, or using the rest area for relaxation. The library stacks were used approximately twice as much as they were avoided. The most frequented subject areas were Philosophy(100), Religion(200), Social Sciences(300), Science(400), Technology(500), and Literature(800), with Literature(800) and Religion(200) displaying the most intersections with other areas. By categorizing users into five clusters based on space utilization patterns, we discerned varying objectives and subject interests, providing insights for future library service enhancements. Moreover, the study underscores the need to address the associated costs and privacy concerns when considering the broader application of AI camera analytics in library settings.

Face Emotion Recognition using ResNet with Identity-CBAM (Identity-CBAM ResNet 기반 얼굴 감정 식별 모듈)

  • Oh, Gyutea;Kim, Inki;Kim, Beomjun;Gwak, Jeonghwan
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.559-561
    • /
    • 2022
  • 인공지능 시대에 들어서면서 개인 맞춤형 환경을 제공하기 위하여 사람의 감정을 인식하고 교감하는 기술이 많이 발전되고 있다. 사람의 감정을 인식하는 방법으로는 얼굴, 음성, 신체 동작, 생체 신호 등이 있지만 이 중 가장 직관적이면서도 쉽게 접할 수 있는 것은 표정이다. 따라서, 본 논문에서는 정확도 높은 얼굴 감정 식별을 위해서 Convolution Block Attention Module(CBAM)의 각 Gate와 Residual Block, Skip Connection을 이용한 Identity- CBAM Module을 제안한다. CBAM의 각 Gate와 Residual Block을 이용하여 각각의 표정에 대한 핵심 특징 정보들을 강조하여 Context 한 모델로 변화시켜주는 효과를 가지게 하였으며 Skip-Connection을 이용하여 기울기 소실 및 폭발에 강인하게 해주는 모듈을 제안한다. AI-HUB의 한국인 감정 인식을 위한 복합 영상 데이터 세트를 이용하여 총 6개의 클래스로 구분하였으며, F1-Score, Accuracy 기준으로 Identity-CBAM 모듈을 적용하였을 때 Vanilla ResNet50, ResNet101 대비 F1-Score 0.4~2.7%, Accuracy 0.18~2.03%의 성능 향상을 달성하였다. 또한, Guided Backpropagation과 Guided GradCam을 통해 시각화하였을 때 중요 특징점들을 더 세밀하게 표현하는 것을 확인하였다. 결과적으로 이미지 내 표정 분류 Task에서 Vanilla ResNet50, ResNet101을 사용하는 것보다 Identity-CBAM Module을 함께 사용하는 것이 더 적합함을 입증하였다.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

development of face mask detector (딥러닝 기반 마스크 미 착용자 검출 기술)

  • Lee, Hanseong;Hwang, Chanwoong;Kim, Jongbeom;Jang, Dohyeon;Lee, Hyejin;Im, Dongju;Jung, Soonki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.270-272
    • /
    • 2020
  • 본 논문은 코로나 방역의 자동화를 위한 Deep learning 기술 적용에 대해 연구한다. 2020년에 가장 중요한 이슈 중 하나인 COVID-19와 그 방역에 대해 많은 사람들이 IT분야에서 떠오르고 있는 artificial intelligence(AI)에 주목하고 있다. COVID-19로 인해 마스크 착용이 선택이 아닌 필수가 되며, 이를 통제하기 위한 모델이 필요한 상황이다. AI, 그 중에서도 Deep learning의 Object detection 기술을 일상생활 곳곳에 존재하는 영상 장치들에 적용하여 합리적인 비용으로 방역의 실시간 자동화를 구현할 수 있다. 이번 논문에서는 인터넷에 공개되어 있는 사물인식 오픈소스를 활용하여 이를 구현하기 위한 연구를 진행하였다. 또 이를 위한 Dataset 확보에 대한 조사도 진행하였다.

  • PDF

Study on the classification system of identification of the enemy in the military border area (군 경계지역에서 피아식별 분류 시스템 연구)

  • Junhyeong Lee;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.203-208
    • /
    • 2024
  • The identification and classification of victims in the county border area is one of the important issues. The personnel that can appear in the military border area are comprised of North Korean soldiers, U.S. soldiers, South Korean soldiers, and the general public, and are currently being confirmed through CCTV. They were classified into true categories and learned through transfer learning. The PyTorch machine learning library was used, and the dataset was utilized by crawling images corresponding to each item shared on Google. The experimental results show that each item is classified with an accuracy of 98.7500%. Future research will explore ways to distinguish more systematically and specifically by going beyond images and adding video or voice recognition.

Iris Region Masking based on Blurring Technique (블러링기법 기반의 홍채영역 마스킹 방법)

  • Lee, Gi Seong;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.25-30
    • /
    • 2022
  • With the recent development of device performance such as smartphones, cameras, and video cameras, it has become possible to obtain human biometric information from images and photos. A German hacker group obtained human iris information from high-definition photos and revealed hacking into iris scanners on smartphones. As high-quality images and photos can be obtained with such advanced devices, the need for a suitable security system is also emerging. Therefore, in this paper, we propose a method of automatically masking human iris information in images and photos using Haar Cascades and Blur models from openCV. It is a technology that automatically masks iris information by recognizing a person's eye in a photo or video and provides the result. If this technology is used in devices and applications such as smartphones and zoom, it is expected to provide better security services to users.

Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training (인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토)

  • Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.99-107
    • /
    • 2023
  • Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.

Quantitative Evaluations of Deep Learning Models for Rapid Building Damage Detection in Disaster Areas (재난지역에서의 신속한 건물 피해 정도 감지를 위한 딥러닝 모델의 정량 평가)

  • Ser, Junho;Yang, Byungyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.381-391
    • /
    • 2022
  • This paper is intended to find one of the prevailing deep learning models that are a type of AI (Artificial Intelligence) that helps rapidly detect damaged buildings where disasters occur. The models selected are SSD-512, RetinaNet, and YOLOv3 which are widely used in object detection in recent years. These models are based on one-stage detector networks that are suitable for rapid object detection. These are often used for object detection due to their advantages in structure and high speed but not for damaged building detection in disaster management. In this study, we first trained each of the algorithms on xBD dataset that provides the post-disaster imagery with damage classification labels. Next, the three models are quantitatively evaluated with the mAP(mean Average Precision) and the FPS (Frames Per Second). The mAP of YOLOv3 is recorded at 34.39%, and the FPS reached 46. The mAP of RetinaNet recorded 36.06%, which is 1.67% higher than YOLOv3, but the FPS is one-third of YOLOv3. SSD-512 received significantly lower values than the results of YOLOv3 on two quantitative indicators. In a disaster situation, a rapid and precise investigation of damaged buildings is essential for effective disaster response. Accordingly, it is expected that the results obtained through this study can be effectively used for the rapid response in disaster management.