• Title/Summary/Keyword: AI 영상인식

Search Result 111, Processing Time 0.026 seconds

Analysis of Sorting Algorithm for Efficient Hardware Implementation (효율적인 하드웨어 구현을 위한 정렬 알고리즘에 대한 분석)

  • Kim, Han Kyeol;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.978-983
    • /
    • 2019
  • Under the influence of Autonomous Driving and AI, it is important to accurately recognize and judge objects through cameras. In particular, since a method of recognizing an object using a camera can obtain a large amount of information visually compared to other methods, many image signal processing methods have been studied to extract an accurate image. In addition, a lot of research is being carried out to implementation about hardware. In this work, we compare the principles and characteristics of the sorting algorithms that are frequently used in image signal processing and summarize the performance evaluation. Based on this, we define an efficient algorithm when implemented in hardware among efficient sorting algorithms.

Ethics for Artificial Intelligence: Focus on the Use of Radiology Images (인공지능 의료윤리: 영상의학 영상데이터 활용 관점의 고찰)

  • Seong Ho Park
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.4
    • /
    • pp.759-770
    • /
    • 2022
  • The importance of ethics in research and the use of artificial intelligence (AI) is increasingly recognized not only in the field of healthcare but throughout society. This article intends to provide domestic readers with practical points regarding the ethical issues of using radiological images for AI research, focusing on data security and privacy protection and the right to data. Therefore, this article refers to related domestic laws and government policies. Data security and privacy protection is a key ethical principle for AI, in which proper de-identification of data is crucial. Sharing healthcare data to develop AI in a way that minimizes business interests is another ethical point to be highlighted. The need for data sharing makes the data security and privacy protection even more important as data sharing increases the risk of data breach.

Object Recognition Using Convolutional Neural Network in military CCTV (합성곱 신경망을 활용한 군사용 CCTV 객체 인식)

  • Ahn, Jin Woo;Kim, Dohyung;Kim, Jaeoh
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.2
    • /
    • pp.11-20
    • /
    • 2022
  • There is a critical need for AI assistance in guard operations of Army base perimeters, which is exacerbated by changes in the national defense and security environment such as force reduction. In addition, the possibility for human error inherent to perimeter guard operations attests to the need for an innovative revamp of current systems. The purpose of this study is to propose a real-time object detection AI tailored to military CCTV surveillance with three unique characteristics. First, training data suitable for situations in which relatively small objects must be recognized is used due to the characteristics of military CCTV. Second, we utilize a data augmentation algorithm suited for military context applied in the data preparation step. Third, a noise reduction algorithm is applied to account for military-specific situations, such as camouflaged targets and unfavorable weather conditions. The proposed system has been field-tested in a real-world setting, and its performance has been verified.

Class 1·3 Vehicle Classification Using Deep Learning and Thermal Image (열화상 카메라를 활용한 딥러닝 기반의 1·3종 차량 분류)

  • Jung, Yoo Seok;Jung, Do Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.96-106
    • /
    • 2020
  • To solve the limitation of traffic monitoring that occur from embedded sensor such as loop and piezo sensors, the thermal imaging camera was installed on the roadside. As the length of Class 1(passenger car) is getting longer, it is becoming difficult to classify from Class 3(2-axle truck) by using an embedded sensor. The collected images were labeled to generate training data. A total of 17,536 vehicle images (640x480 pixels) training data were produced. CNN (Convolutional Neural Network) was used to achieve vehicle classification based on thermal image. Based on the limited data volume and quality, a classification accuracy of 97.7% was achieved. It shows the possibility of traffic monitoring system based on AI. If more learning data is collected in the future, 12-class classification will be possible. Also, AI-based traffic monitoring will be able to classify not only 12-class, but also new various class such as eco-friendly vehicles, vehicle in violation, motorcycles, etc. Which can be used as statistical data for national policy, research, and industry.

Analyze Technologies and Trends in Commercialized Radiology Artificial Intelligence Medical Device (상용화된 영상의학 인공지능 의료기기의 기술 및 동향 분석)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.881-887
    • /
    • 2023
  • This study aims to analyze the development and current trends of AI-based medical imaging devices commercialized in South Korea. As of September 30, 2023, there were a total of 186 AI-based medical devices licensed, certified, and reported to the Korean Ministry of Food and Drug Safety, of which 138 were related to imaging. The study comprehensively examined the yearly approval trends, equipment types, application areas, and key functions from 2018 to 2023. The study found that the number of AI medical devices started from four products in 2018 and grew steadily until 2023, with a sharp increase after 2020. This can be attributed to the interaction between the advancement of AI technology and the increasing demand in the medical field. By equipment, AI medical devices were developed in the order of CT, X-ray, and MR, which reflects the characteristics and clinical importance of the images of each equipment. This study found that the development of AI medical devices for specific areas such as the thorax, cranial nerves, and musculoskeletal system is active, and the main functions are medical image analysis, detection and diagnosis assistance, and image transmission. These results suggest that AI's pattern recognition and data analysis capabilities are playing an important role in the medical imaging field. In addition, this study examined the number of Korean products that have received international certifications, particularly the US FDA and European CE. The results show that many products have been certified by both organizations, indicating that Korean AI medical devices are in line with international standards and are competitive in the global market. By analyzing the impact of AI technology on medical imaging and its potential for development, this study provides important implications for future research and development directions. However, challenges such as regulatory aspects, data quality and accessibility, and clinical validity are also pointed out, requiring continued research and improvement on these issues.

Artificial intelligence (AI) parking control solution using CCTV to solve multi-family housing parking problems (다세대주택 주차 문제 해소를 위한 CCTV를 활용한 인공지능(AI) 주차관제 솔루션)

  • Choi, Kyu-Min;Kim, Yu-Min;Shin, Jun-Pyo;Kim, Jung-Hyeon;Kwak, Min-Hyuk;Kim, Byung-Wan;Lee, Byong-Kwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.273-275
    • /
    • 2021
  • 본 논문에서는 기존 스마트주차관제 시스템의 한계로 인해 주차 관제의 사각지대에 있는 다세대 주택 주차 문제를 해결하는 솔루션을 제안한다. 기존 스마트 주차관제는 센서 기반의 고비용의 장비 및 시공비가 소요되며, 이러한 특성으로 인해 다세대 주택에 적용이 어렵다. 해당 문제를 해결하기 위해 본 논문은 기존 설비인 CCTV를 활용한 스마트 주차 관제 시스템을 제안하며, 해당 솔루션은 텐서플로 cnn중 알씨엔엔 RPN을 적용하여 차량 객체 인식 및 주차 공간 객체 인식을 구현하였으며, 다세대 주택 주변 CCTV 영상을 OpenCV를 활용하여 능동적이며 저비용의 스마트 주차 관제 방식을 구현하였으며 CCTV의 특성상 외곡되는 이미지를 OpenCV 이미지 변형을 통해 외곡 이미지를 복원하여 인식률을 높였다.

  • PDF

A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection (보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구)

  • Sung-Youn Cho;Yeo-Hwan Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.197-205
    • /
    • 2024
  • Development of AI and big data-based algorithms to advance and optimize the recognition and detection performance of various static/dynamic vehicles in front and around the vehicle at a time when securing driving safety is the most important point in the development and commercialization of autonomous vehicles. etc. are being studied. However, there are many research cases for recognizing the same vehicle by using the unique advantages of radar and camera, but deep learning image processing technology is not used, or only a short distance is detected as the same target due to radar performance problems. Therefore, there is a need for a convergence-based vehicle recognition method that configures a dataset that can be collected from radar equipment and camera equipment, calculates the error of the dataset, and recognizes it as the same target. In this paper, we aim to develop a technology that can link location information according to the installation location because data errors occur because it is judged as the same object depending on the installation location of the radar and CCTV (video).

Image Restoration Algorithm Damaged by Mixed Noise using Fuzzy Weights and Noise Judgment (퍼지 가중치와 잡음판단을 이용한 복합잡음에 훼손된 영상의 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.133-135
    • /
    • 2022
  • With the development of IoT and AI technologies and media, various digital devices are being used, and unmanned and automation is progressing rapidly. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. However, noise present in the image affects processes such as edge detection and object recognition, and causes deterioration of system accuracy and reliability. In this paper, we propose a filtering algorithm using fuzzy weights to reconstruct images damaged by complex noise. The proposed algorithm obtains a reference value using noise judgment and calculates the final output by applying a fuzzy weight. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared with the existing filter algorithm and evaluated.

  • PDF

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (객체 인식 모델과 지면 투영기법을 활용한 영상 내 다중 객체의 위치 보정 알고리즘 구현)

  • Dong-Seok Park;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.119-125
    • /
    • 2023
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.