• Title/Summary/Keyword: AI 생성 이미지

Search Result 106, Processing Time 0.024 seconds

A Study on the Aesthetic Value and Emotional Differences between AI-Generated Images and Artists' Works (인공지능 생성 이미지와 예술가의 작품의 미학적 가치와 감정적 차이에 대한 연구)

  • Min Kyu Kim;Jae Wan Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.627-630
    • /
    • 2024
  • 본 연구는 인공지능(AI)과 인간이 만든 예술작품 사이의 나타나는 기술적 요소에서 나타나는 차이점 탐구를 통해, 인공지능 예술의 특성, 가능성, 한계를 파악하고, 예술가의 역할에 대한 심층적 이해를 도모하는 것을 목적으로 한다. 연구 결과는 AI 생성 예술이 인간 예술과 경쟁할 수 있으며, 일반 대중 사이에서 높은 미학적 가치를 인정받을 수 있음을 나타냈다. 또한 AI 가 예술창작에서 중요한 역할을 할 수 있음을 나타냈다. 본 연구는 예술계 내에서 AI 예술의 위치와 사회적 수용에 대한 더 깊은 이해를 제공할 것으로 기대된다.

Comparison of the Differences in AI-Generated Images Using Midjourney and Stable Diffusion (Midjourney와 Stable Diffusion을 이용한 AI 생성 이미지의 차이 비교)

  • Linh Bui Duong Hoai;Kang-Hee Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.563-564
    • /
    • 2023
  • Midjourney and Stable Diffusion are two popular AI-generated image programs nowadays. With AI's outstanding image-generation capabilities, everyone can create artistic paintings in just a few minutes. Therefore, "Comparison of differences between AI-generated images using Midjourney and Stable Diffusion" will help see each program's advantages and assist the users in identifying the tool suitable for their needs.

  • PDF

Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models (인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류)

  • K.P.S. Kumaratenna;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this study, five artificial intelligence (AI) models: Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc were used to classify tea leaf diseases. Eight image categories were used: healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot. Software used in this study was Orange 3 which functions as a Python library for visual programming, that operates through an interface that generates workflows to visually manipulate and analyze the data. The precision of each AI model was recorded to select the ideal AI model. All models were trained using the Adam solver, rectified linear unit activation function, 100 neurons in the hidden layers, 200 maximum number of iterations in the neural network, and 0.0001 regularizations. To extend the functionality of Orange 3, new add-ons can be installed and, this study image analytics add-on was newly added which is required for image analysis. For the training model, the import image, image embedding, neural network, test and score, and confusion matrix widgets were used, whereas the import images, image embedding, predictions, and image viewer widgets were used for the prediction. Precisions of the neural networks of the five AI models (Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc) were 0.807, 0.901, 0.780, 0.800, and 0.771, respectively. Finally, the SqueezeNet (local) model was selected as the optimal AI model for the detection of tea diseases using tea leaf images owing to its high precision and good performance throughout the confusion matrix.

An Exploratory Study of Success Factors for Generative AI Services: Utilizing Text Mining and ChatGPT (생성형AI 서비스의 성공요인에 대한 탐색적 연구: 텍스트 마이닝과 ChatGPT를 활용하여)

  • Ji Hoon Yang;Sung-Byung Yang;Sang-Hyeak Yoon
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.125-144
    • /
    • 2023
  • Generative Artificial Intelligence (AI) technology is gaining global attention as it can automatically generate sentences, images, and voices that humans previously generated. In particular, ChatGPT, a representative generative AI service, shows proactivity and accuracy differentiated from existing chatbot services, and the number of users is rapidly increasing in a short period of time. Despite this growing interest in generative AI services, most preceding studies are still in their infancy. Therefore, this study utilized LDA topic modeling and keyword network diagrams to derive success factors for generative AI services and to propose successful business strategies based on them. In addition, using ChatGPT, a new research methodology that complements the existing text-mining method, was presented. This study overcomes the limitations of previous research that relied on qualitative methods and makes academic and practical contributions to the future development of generative AI services.

A Study on Image Quality Improvement for 3D Pagoda Restoration (3D 탑복원을 위한 화질 개선에 관한 연구)

  • Kim, Beom Jun-Ji;Lee, Hyun-woo;Kim, Ki-hyeop;Kim, Eun-ji;Kim, Young-jin;Lee, Byong-Kwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.145-147
    • /
    • 2022
  • 본 논문에서는 훼손되어 식별할 수 없는 탑 이미지를 비롯해 낮은 해상도의 탑 이미지를 개선하기 위해 우리는 탑 이미지의 화질 개선을 인공지능을 이용하여 빠르게 개선을 해 보고자 한다. 최근에 Generative Adversarial Networks(GANS) 알고리즘에서 SrGAN 알고리즘이 나오면서 이미지 생성, 이미지 복원, 해상도 변화 분야가 지속해서 발전하고 있다. 이에 본 연구에서는 다양한 GAN 알고리즘을 화질 개선에 적용해 보았다. 탑 이미지에 GAN 알고리즘 중 SrGan을 적용하였으며 실험한 결과 Srgan 알고리즘은 학습이 진행되었으며, 낮은 해상도의 탑 이미지가 높은 해상도, 초고해상도 이미지가 생성되는 것을 확인했다.

  • PDF

Med-StyleGAN2: A GAN-Based Synthetic Data Generation for Medical Image Generation (Med-StyleGAN2: 의료 영상 생성을 위한 GAN 기반의 합성 데이터 생성)

  • Jae-Ha Choi;Sung-Yeon Kim;Hae-Rin Byeon;Se-Yeon Lee;Jung-Soo Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.904-905
    • /
    • 2023
  • 본 논문에서는 의료 영상 생성을 위한 Med-StyleGAN2를 제안한다. 생성적 적대 신경망은 이미지 생성에는 효과적이지만, 의료 영상 생성에는 한계점을 가지고 있다. 따라서 본 연구에서는 의료 영상 생성에 특화된 StyleGAN 기반 학습 모델을 제안한다. 이는 다양한 의료 영상 어플리케이션에 활용할 수 있으며, 생성된 의료 영상에 대한 정량적, 정성적 평가를 수행함으로써 의료 영상 생성 분야의 발전 가능성에 대해 연구한다.

Image Super-Resolution for Improving Object Recognition Accuracy (객체 인식 정확도 개선을 위한 이미지 초해상도 기술)

  • Lee, Sung-Jin;Kim, Tae-Jun;Lee, Chung-Heon;Yoo, Seok Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.774-784
    • /
    • 2021
  • The object detection and recognition process is a very important task in the field of computer vision, and related research is actively being conducted. However, in the actual object recognition process, the recognition accuracy is often degraded due to the resolution mismatch between the training image data and the test image data. To solve this problem, in this paper, we designed and developed an integrated object recognition and super-resolution framework by proposing an image super-resolution technique to improve object recognition accuracy. In detail, 11,231 license plate training images were built by ourselves through web-crawling and artificial-data-generation, and the image super-resolution artificial neural network was trained by defining an objective function to be robust to the image flip. To verify the performance of the proposed algorithm, we experimented with the trained image super-resolution and recognition on 1,999 test images, and it was confirmed that the proposed super-resolution technique has the effect of improving the accuracy of character recognition.

Development of AI-Based Body Shape 3D Modeling Technology Applicable in The Healthcare Sector (헬스케어 분야에서 활용 가능한 AI 기반 체형 3D 모델링 기술 개발)

  • Ji-Yong Lee;Chang-Gyun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.633-640
    • /
    • 2024
  • This study develops AI-based 3D body shape modeling technology that can be utilized in the healthcare sector, proposing a system that enables monitoring of users' body shape changes and health status. Utilizing data from Size Korea, the study developed a model to generate 3D body shape images from 2D images, and compared various models to select the one with the best performance. Ultimately, by proposing a system process through the developed technology, including personalized health management, exercise recommendations, and dietary suggestions, the study aims to contribute to disease prevention and health promotion.

3D Object Extraction Mechanism from Informal Natural Language Based Requirement Specifications (비정형 자연어 요구사항으로부터 3D 객체 추출 메커니즘)

  • Hyuntae Kim;Janghwan Kim;Jihoon Kong;Kidu Kim;R. Young Chul Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.453-459
    • /
    • 2024
  • Recent advances in generative AI technologies using natural language processing have critically impacted text, image, and video production. Despite these innovations, we still need to improve the consistency and reusability of AI-generated outputs. These issues are critical in cartoon creation, where the inability to consistently replicate characters and specific objects can degrade the work's quality. We propose an integrated adaption of language analysis-based requirement engineering and cartoon engineering to solve this. The proposed method applies the linguistic frameworks of Chomsky and Fillmore to analyze natural language and utilizes UML sequence models for generating consistent 3D representations of object interactions. It systematically interprets the creator's intentions from textual inputs, ensuring that each character or object, once conceptualized, is accurately replicated across various panels and episodes to preserve visual and contextual integrity. This technique enhances the accuracy and consistency of character portrayals in animated contexts, aligning closely with the initial specifications. Consequently, this method holds potential applicability in other domains requiring the translation of complex textual descriptions into visual representations.

Rib Segmentation via Biaxial Slicing and 3D Reconstruction (다중 축 슬라이싱 및 3 차원 재구성을 통한 갈비뼈 세그멘테이션)

  • Hyunsung Kim;Gyurin Byun;Seonghyeon Ko;Junghyun Bum;Duc-Tai Le;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.611-614
    • /
    • 2023
  • 갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.