• Title/Summary/Keyword: AI 분류 모델

Search Result 224, Processing Time 0.029 seconds

A Study on the Satisfaction and Dissatisfaction in AI Chatbot (인공지능 챗봇 서비스의 만족과 불만족에 관한 연구)

  • Yang, Chang-Gyu
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.167-177
    • /
    • 2022
  • Unlike previous studies on AI chatbot preference that focused mostly on satisfaction, this study considered both satisfaction and dissatisfaction. This study established that (1) AI chatbot preference is driven by attractive, must-be, and one-dimensional qualities, (2) AI chatbot need to develop service strategies by taking into account users' satisfaction and dissatisfaction in accordance with preference drivers, and (3) users view interaction as a requisite and thus, if they are not satisfied with services of a AI chatbot, they don't tend to appeal their opinion and leave the service with AI chatbot. This study emphasizes that a AI chatbot that desires to be a dominant market player must provide differentiated services according to the preference drivers and must continuously encourage user participation in order to improve service quality.

Artificial Intelligence-based Crack Segmentation Algorithm for Safety diagnosis of old buildings (노후 건축물 안전진단을 위한 AI기반 균열 구획화 알고리즘)

  • Hee Ju Seo;Byeong Il Hwang;Dong Ju Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.13-14
    • /
    • 2023
  • 집중 안전 점검의 대상인 노후 건축물에서 균열은 건물의 안전도를 점검할 수 있는 지표이다. 안전 점검에 드론을 활용하면서 고해상도의 드론 기반 균열 이미지 수집이 가능해졌고, 육안이 아닌 AI기반으로 균열을 탐지, 구획화할 수 있다. 본 연구에서는 주변 사물과 배경에 구애받지 않고 안전 점검이 가능한 구획화 알고리즘을 제안한다. METU와 POC데이터셋을 가공하여 데이터셋을 구축하고, 이를 바탕으로 ResNet50을 통해 균열과 유사한 배경을 분류하였으며, 균열 구획화 모델을 선정하여 DesneNet201-UNet++으로 mIoU 82.27%를 달성하였다. 본 연구는 노후 건축물 안전 점검에 필요한 균열 폭 추정에 도움이 될 것으로 기대된다.

  • PDF

Generation Methodology Using Super In-Context Learning (Super In-Context Learning을 활용한 생성 방법론)

  • Seongtae Hong;Seungjun Lee;Gyeongmin Kim;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.382-387
    • /
    • 2023
  • 현재 GPT-4와 같은 거대한 언어 모델이 기계 번역, 요약 및 대화와 같은 다양한 작업에서 압도적인 성능을 보이고 있다. 그러나 이러한 거대 언어 모델은 학습 및 적용에 상당한 계산 리소스와 도메인 특화 미세 조정이 어려운 등 몇 가지 문제를 가지고 있다. In-Context learning은 데이터셋에서 추출한 컨택스트의 정보만으로 효과적으로 작동할 수 있는 효율성을 제공하여 앞선 문제를 일부 해결했지만, 컨텍스트의 샷 개수와 순서에 민감한 문제가 존재한다. 이러한 도전 과제를 해결하기 위해, 우리는 Super In-Context Learning (SuperICL)을 활용한 새로운 방법론을 제안한다. 기존의 SuperICL은 적용한 플러그인 모델의 출력 정보를 이용하여 문맥을 새로 구성하고 이를 활용하여 거대 언어 모델이 더욱 잘 분류할 수 있도록 한다. Super In-Context Learning for Generation은 다양한 자연어 생성 작업에 효과적으로 최적화하는 방법을 제공한다. 실험을 통해 플러그인 모델을 교체하여 다양한 작업에 적응하는 가능성을 확인하고, 자연어 생성 작업에서 우수한 성능을 보여준다. BLEU 및 ROUGE 메트릭을 포함한 평가 결과에서도 성능 향상을 보여주며, 선호도 평가를 통해 모델의 효과성을 확인했다.

  • PDF

Data Preprocessing and ML Analysis Method for Abnormal Situation Detection during Approach using Domestic Aircraft Safety Data (국내 항공기 위치 데이터를 활용한 이착륙 접근 단계에서의 항공 위험상황 탐지를 위한 데이터 전처리 및 머신 러닝 분석 기법)

  • Sang Ho Lee;Ilrak Son;Kyuho Jeong;Nohsam Park
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.110-125
    • /
    • 2023
  • In this paper, we utilize time-series aircraft location data measured based on 2019 domestic airports to analyze Go-Around and UOC_D situations during the approach phase of domestic airports. Various clustering-based machine learning techniques are applied to determine the most appropriate analysis method for domestic aviation data through experimentation. The ADS-B sensor is solely employed to measure aircraft positions. We designed a model using clustering algorithms such as K-Means, GMM, and DBSCAN to classify abnormal situations. Among them, the RF model showed the best performance overseas, but through experiments, it was confirmed that the GMM showed the highest classification performance for domestic aviation data by reflecting the aspects specialized in domestic terrain.

  • PDF

Yoga Poses Image Classification and Interpretation Using Explainable AI (XAI) (XAI 를 활용한 설명 가능한 요가 자세 이미지 분류 모델)

  • Yu Rim Park;Hyon Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.590-591
    • /
    • 2023
  • 최근 사람들의 건강에 대한 관심이 많아지고 다양한 운동 컨텐츠가 확산되면서 실내에서 운동을 할 수 있는 기회가 많아졌다. 하지만, 전문가의 도움없이 정확하지 않은 동작을 수행하다 큰 부상을 입을 위험성이 높다. 본 연구는 CNN 기반 요가 자세 분류 모델을 생성하고 설명가능 인공지능 기술을 적용하여 예측 결과에 대한 해석을 제시한다. 사용자에게 설명성과 신뢰성 있는 모델을 제공하여 자신에게 맞게 올바른 자세를 결정할 수 있고, 무리한 동작으로 부상을 입을 확률 또한 낮출 수 있을 것으로 보인다.

A system for simplifying large-scale household waste (household appliances, furniture, etc.) using data analysis (데이터 분석을 활용한 생활 대형 폐기품(가전, 가구 등) 간소화 시스템)

  • Oh, Jieun;Kang, Woo-Il;Kim, Ga-Hee;Kim, Ji-Hyeon;Kim, Chae-min
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1025-1027
    • /
    • 2022
  • 도시화가 급속도로 진행됨에 따라서 일상생활에서 생활폐기물의 관리와 처리에 대한 문제가 심각해지고 있다. 이 문제를 해결하고자 어플리케이션을 통해 생활폐기물 처리를 쉽게 할 수 있는 시스템을 제안한다. '싹처리'는 편리성, 정확성, 확장성, 수익성을 가지고 (중)대형 생활 폐기물 처리하는 딥러닝 어플리케이션이다. 어플리케이션 내의 저장된 딥러닝 과정으로 학습되어진 생활폐기물 분류 모델을 통해 폐기물 사진을 자동 인식하는 과정으로 누구나 쉽게 폐기물 배출을 신청할 수 있다. 정확한 딥러닝 알고리즘과 전이학습, 데이터 검수 등을 통해 높은 성능의 사물 자동 인식을 할 수 있다. 이 시스템을 통해 임산부, 장애인, 독거노인 등의 사회적 약자는 불필요한 과정 없이 손쉽게 폐기물을 처리할 수 있고, 더 나아가 중고시장의 활성화에 기여할 수 있는 가치가 있다.

Critical Error Span Detection Model of Korean Machine Translation (한국어 기계 번역에서의 품질 검증을 위한 치명적인 오류 범위 탐지 모델)

  • Dahyun Jung;Seungyoon Lee;Sugyeong Eo;Chanjun Park;Jaewook Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.80-85
    • /
    • 2023
  • 기계 번역에서 품질 검증은 정답 문장 없이 기계 번역 시스템에서 생성된 번역의 품질을 자동으로 추정하는 것을 목표로 한다. 일반적으로 이 작업은 상용화된 기계 번역 시스템에서 후처리 모듈 역할을 하여 사용자에게 잠재적인 번역 오류를 경고한다. 품질 검증의 하위 작업인 치명적인 오류 탐지는 번역의 오류 중에서도 정치, 경제, 사회적으로 문제를 일으킬 수 있을 만큼 심각한 오류를 찾는 것을 목표로 한다. 본 논문은 치명적인 오류의 유무를 분류하는 것을 넘어 문장에서 치명적인 오류가 존재하는 부분을 제시하기 위한 새로운 데이터셋과 모델을 제안한다. 이 데이터셋은 거대 언어 모델을 활용하는 구축 방식을 채택하여 오류의 구체적인 범위를 표시한다. 또한, 우리는 우리의 데이터를 효과적으로 활용할 수 있는 다중 작업 학습 모델을 제시하여 오류 범위 탐지에서 뛰어난 성능을 입증한다. 추가적으로 언어 모델을 활용하여 번역 오류를 삽입하는 데이터 증강 방법을 통해 보다 향상된 성능을 제시한다. 우리의 연구는 기계 번역의 품질을 향상시키고 치명적인 오류를 줄이는 실질적인 해결책을 제공할 것이다.

  • PDF

Generative AI based Emotion Analysis of Consumer Reviews Using the Emotion Wheel (생성 AI 기반 감정 수레바퀴 모델을 활용한 사용자 리뷰 감정 분석)

  • Yu Rim Park;Hyon Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1204-1205
    • /
    • 2023
  • 본 논문은 소비자의 리뷰 데이터를 기반으로 한 새로운 감성 분석 방법을 제안한다. 긍정, 부정, 중립으로 분류하는 전통적 감성 분석방법은 텍스트에 나타난 감정의 섬세한 차이를 파악하기 어렵다. 이에 본 연구에서는 GPT 모델을 사용하여 텍스트에서 사용자의 감정을 8 가지의 카테고리로 세분화한다. 부정적 정서를 가진 리뷰에서 분노, 혐오, 실망과 같은 구체적인 감정들을 직관적으로 파악할 수 있었고, 감정의 강도까지 파악할 수 있었다. 제안된 방법을 통해 기업은 고객의 요구 사항을 정확하게 인지할 수 있으며, 고객 맞춤형 서비스 개선에 기여할 수 있다는 점이 기대된다.

Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis (CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증)

  • Lee Chung-Sub;Lim Dong-Wook;Noh Si-Hyeong;Kim Tae-Hoon;Ko Yousun;Kim Kyung Won;Jeong Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2023
  • Sarcopenia is not well known enough to be classified as a disease in 2021 in Korea, but it is recognized as a social problem in developed countries that have entered an aging society. The diagnosis of sarcopenia follows the international standard guidelines presented by the European Working Group for Sarcopenia in Older People (EWGSOP) and the d Asian Working Group for Sarcopenia (AWGS). Recently, it is recommended to evaluate muscle function by using physical performance evaluation, walking speed measurement, and standing test in addition to absolute muscle mass as a diagnostic method. As a representative method for measuring muscle mass, the body composition analysis method using DEXA has been formally implemented in clinical practice. In addition, various studies for measuring muscle mass using abdominal images of MRI or CT are being actively conducted. In this paper, we develop an AI image segmentation model based on abdominal images of CT with a relatively short imaging time for the diagnosis of sarcopenia and describe the multicenter validation. We developed an artificial intelligence model using U-Net that can automatically segment muscle, subcutaneous fat, and visceral fat by selecting the L3 region from the CT image. Also, to evaluate the performance of the model, internal verification was performed by calculating the intersection over union (IOU) of the partitioned area, and the results of external verification using data from other hospitals are shown. Based on the verification results, we tried to review and supplement the problems and solutions.

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.