• Title/Summary/Keyword: AI 분류 모델

Search Result 224, Processing Time 0.029 seconds

Implementation of hand motion recognition-based rock-paper-scissors game using ResNet50 transfer learning (ResNet50 전이학습을 활용한 손동작 인식 기반 가위바위보 게임 구현)

  • Park, Changjoon;Kim, Changki;Son, Seongkyu;Lee, Kyoungjin;Yoo, Heekyung;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.77-82
    • /
    • 2022
  • GUI(Graphical User Interface)를 대신하는 차세대 인터페이스로서 NUI(Natural User Interace)에 기대가 모이는 것은 자연스러운 흐름이다. 본 연구는 NUI의 손가락 관절을 포함한 손동작 전체를 인식시키기 위해 웹캠과 카메라를 활용하여 다양한 배경과 각도의 손동작 데이터를 수집한다. 수집된 데이터는 전처리를 거쳐 데이터셋을 구축하며, ResNet50 모델을 활용하여 전이학습한 합성곱 신경망(Convolutional Neural Network) 알고리즘 분류기를 설계한다. 구축한 데이터셋을 입력시켜 분류학습 및 예측을 진행하며, 실시간 영상에서 인식되는 손동작을 설계한 모델에 입력시켜 나온 결과를 통해 가위바위보 게임을 구현한다.

  • PDF

A Review of the Methodology for Sophisticated Data Classification (정교한 데이터 분류를 위한 방법론의 고찰)

  • Kim, Seung Jae;Kim, Sung Hwan
    • Journal of Integrative Natural Science
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • 전 세계적으로 인공지능(AI)을 구현하려는 움직임이 많아지고 있다. AI구현에서는 많은 양의 데이터, 목적에 맞는 데이터의 분류 등 데이터의 중요성을 뺄 수 없다. 이러한 데이터를 생성하고 가공하는 기술에는 사물인터넷(IOT)과 빅데이터(Big-data) 분석이 있으며 4차 산업을 이끌어 가는 원동력이라 할 수 있다. 또한 이러한 기술은 국가와 개인 차원에서 많이 활용되고 있으며, 특히나 특정분야에 집결되는 데이터를 기준으로 빅데이터 분석에 활용함으로써 새로운 모델을 발견하고, 그 모델로 새로운 값을 추론하고 예측함으로써 미래비전을 제시하려는 시도가 많아지고 있는 추세이다. 데이터 분석을 통한 결론은 데이터가 가지고 있는 정보의 정확성에 따라 많은 변화를 가져올 수 있으며, 그 변화에 따라 잘못된 결과를 발생시킬 수도 있다. 이렇듯 데이터의 분석은 데이터가 가지는 정보 또는 분석 목적에 맞는 데이터 분류가 매우 중요하다는 것을 알 수 있다. 또한 빅데이터 분석결과 통계량의 신뢰성과 정교함을 얻기 위해서는 각 변수의 의미와 변수들 간의 상관관계, 다중공선성 등을 고려하여 분석해야 한다. 즉, 빅데이터 분석에 앞서 분석목적에 맞도록 데이터의 분류가 잘 이루어지도록 해야 한다. 이에 본 고찰에서는 AI기술을 구현하는 머신러닝(machine learning, ML) 기법에 속하는 분류분석(classification analysis, CA) 중 의사결정트리(decision tree, DT)기법, 랜덤포레스트(random forest, RF)기법, 선형분류분석(linear discriminant analysis, LDA), 이차선형분류분석(quadratic discriminant analysis, QDA)을 이용하여 데이터를 분류한 후 데이터의 분류정도를 평가함으로써 데이터의 분류 분석률 향상을 위한 방안을 모색하려 한다.

Performance Assessment of Machine Learning and Deep Learning in Regional Name Identification and Classification in Scientific Documents (머신러닝을 이용한 과학기술 문헌에서의 지역명 식별과 분류방법에 대한 성능 평가)

  • Jung-Woo Lee;Oh-Jin Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.389-396
    • /
    • 2024
  • Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.

A Study on Classification Models for Predicting Bankruptcy Based on XAI (XAI 기반 기업부도예측 분류모델 연구)

  • Jihong Kim;Nammee Moon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.333-340
    • /
    • 2023
  • Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology have been used. In the financial industry, even if the performance of the new predictive models is excellent, it should be accompanied by an intuitive explanation of the basis on which the result was determined. Recently, the US, EU, and South Korea have commonly presented the right to request explanations of algorithms, so transparency in the use of AI in the financial sector must be secured. In this paper, an artificial intelligence-based interpretable classification prediction model was proposed using corporate bankruptcy data that was open to the outside world. First, data preprocessing, 5-fold cross-validation, etc. were performed, and classification performance was compared through optimization of 10 supervised learning classification models such as logistic regression, SVM, XGBoost, and LightGBM. As a result, LightGBM was confirmed as the best performance model, and SHAP, an explainable artificial intelligence technique, was applied to provide a post-explanation of the bankruptcy prediction process.

Analysis and Comparison of Classification Performance on Handwritten Datasets using ResNet-50 Model (ResNet-50 모델을 이용한 손글씨 데이터 세트의 분류 성능 분석 및 비교)

  • Jeyong Song;Jongwook Si;Sungyoung Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.19-20
    • /
    • 2023
  • 본 논문은 손글씨 인식 분야에서 가장 기본적이고 중요한 주제인 손글씨 데이터 세트에 대한 분류 성능을 분석하고 비교하는 것을 목표로 한다. 이를 위해 ResNet-50 모델을 사용하여 MNIST, EMNIST, KMNIST라는 세 가지 대표적인 손글씨 데이터 세트에 대한 분류 작업을 수행한다. 각 데이터 세트의 특징과 도메인, 그리고 데이터 세트 간의 차이와 특징에 대해 다루며, ResNet-50 모델을 학습하고 평가한 분류 성능을 비교하고 결과에 대해 분석한 결과를 제시한다.

  • PDF

Customized AI Exercise Recommendation Service for the Balanced Physical Activity (균형적인 신체활동을 위한 맞춤형 AI 운동 추천 서비스)

  • Chang-Min Kim;Woo-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.234-240
    • /
    • 2022
  • This paper proposes a customized AI exercise recommendation service for balancing the relative amount of exercise according to the working environment by each occupation. WISDM database is collected by using acceleration and gyro sensors, and is a dataset that classifies physical activities into 18 categories. Our system recommends a adaptive exercise using the analyzed activity type after classifying 18 physical activities into 3 physical activities types such as whole body, upper body and lower body. 1 Dimensional convolutional neural network is used for classifying a physical activity in this paper. Proposed model is composed of a convolution blocks in which 1D convolution layers with a various sized kernel are connected in parallel. Convolution blocks can extract a detailed local features of input pattern effectively that can be extracted from deep neural network models, as applying multi 1D convolution layers to input pattern. To evaluate performance of the proposed neural network model, as a result of comparing the previous recurrent neural network, our method showed a remarkable 98.4% accuracy.

A Study of AI model extraction attack and defense techniques (AI 모델 탈취 공격 및 방어 기법들에 관한 연구)

  • Jun, So-Hee;Lee, Young-Han;Kim, Hyun-Jun;Paek, Yun-Heung
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.382-384
    • /
    • 2021
  • AI (Artificial Intelligence)기술이 상용화되면서 최근 기업들은 AI 모델의 기능을 서비스화하여 제공하고 있다. 하지만 최근 이러한 서비스를 이용하여 기업이 자본을 투자해 학습시킨 AI 모델을 탈취하는 공격이 등장하여 위협이 되고 있다. 본 논문은 최근 연구되고 있는 이러한 모델 탈취 공격들에 대해 공격자의 정보를 기준으로 분류하여 서술한다. 또한 본 논문에서는 모델 탈취 공격에 대응하기 위해 다양한 관점에서 시도되는 방어 기법들에 대해 서술한다.

Relationship classification model through CNN-based model learning: AI-based Self-photo Studio Pose Recommendation Frameworks (CNN 기반의 모델 학습을 통한 관계 분류 모델 : AI 기반의 셀프사진관 포즈 추천 프레임워크)

  • Kang-Min Baek;Yeon-Jee Han
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.951-952
    • /
    • 2023
  • 소위 '인생네컷'이라 불리는 셀프사진관은 MZ 세대의 새로운 놀이 문화로 떠오르며 사용자 수가 나날이 증가하고 있다. 그러나 짧은 시간 내에 다양한 포즈를 취해야 하는 셀프사진관 특성상 촬영이 낯선 사람에게는 여전히 진입장벽이 존재한다. 더불어 매번 비슷한 포즈와 사진 결과물에 기존 사용자는 점차 흥미를 잃어가는 문제점도 발생하고 있다. 이에 본 연구에서는 셀프사진관 사용자의 관계를 분류하는 모델을 개발하여 관계에 따른 적합하고 다양한 포즈를 추천하는 프레임워크를 제안한다. 사용자의 관계를 'couple', 'family', 'female_friend', 'female_solo', 'male_friend', 'male_solo' 총 6 개로 구분하였고 실제 현장과 유사하도록 단색 배경의 이미지를 우선으로 학습 데이터를 수집하여 모델의 성능을 높였다. 모델 학습 단계에서는 모델의 성능을 높이기 위해 여러 CNN 기반의 모델을 전이학습하여 각각의 정확도를 비교하였다. 결과적으로 195 장의 test_set 에서 accuracy 0.91 의 성능 평가를 얻었다. 본 연구는 객체 인식보다 객체 간의 관계를 학습시켜 관계성을 추론하고자 하는 것을 목적으로, 연구 결과가 희박한 관계 분류에 대한 주제를 직접 연구하여 추후의 방향성이나 방법론과 같은 초석을 제안할 수 있다. 또한 관계 분류 모델을 CCTV 에 활용하여 미아 방지 혹은 추적과 구조 등에 활용하여 국가 치안을 한층 높이는 데 기대할 수 있다.

Detects depression-related emotions in user input sentences (사용자 입력 문장에서 우울 관련 감정 탐지)

  • Oh, Jaedong;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1759-1768
    • /
    • 2022
  • This paper proposes a model to detect depression-related emotions in a user's speech using wellness dialogue scripts provided by AI Hub, topic-specific daily conversation datasets, and chatbot datasets published on Github. There are 18 emotions, including depression and lethargy, in depression-related emotions, and emotion classification tasks are performed using KoBERT and KOELECTRA models that show high performance in language models. For model-specific performance comparisons, we build diverse datasets and compare classification results while adjusting batch sizes and learning rates for models that perform well. Furthermore, a person performs a multi-classification task by selecting all labels whose output values are higher than a specific threshold as the correct answer, in order to reflect feeling multiple emotions at the same time. The model with the best performance derived through this process is called the Depression model, and the model is then used to classify depression-related emotions for user utterances.

Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models (인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류)

  • K.P.S. Kumaratenna;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this study, five artificial intelligence (AI) models: Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc were used to classify tea leaf diseases. Eight image categories were used: healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot. Software used in this study was Orange 3 which functions as a Python library for visual programming, that operates through an interface that generates workflows to visually manipulate and analyze the data. The precision of each AI model was recorded to select the ideal AI model. All models were trained using the Adam solver, rectified linear unit activation function, 100 neurons in the hidden layers, 200 maximum number of iterations in the neural network, and 0.0001 regularizations. To extend the functionality of Orange 3, new add-ons can be installed and, this study image analytics add-on was newly added which is required for image analysis. For the training model, the import image, image embedding, neural network, test and score, and confusion matrix widgets were used, whereas the import images, image embedding, predictions, and image viewer widgets were used for the prediction. Precisions of the neural networks of the five AI models (Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc) were 0.807, 0.901, 0.780, 0.800, and 0.771, respectively. Finally, the SqueezeNet (local) model was selected as the optimal AI model for the detection of tea diseases using tea leaf images owing to its high precision and good performance throughout the confusion matrix.