• 제목/요약/키워드: AI 및 데이터 리터러시

검색결과 17건 처리시간 0.018초

PJBL기반 데이터 분석을 통한 비전공자의 AI 교육 효과성 검증 (Verification of the effectiveness of AI education for Non-majors through PJBL-based data analysis)

  • 백수진;박소현
    • 디지털융복합연구
    • /
    • 제19권9호
    • /
    • pp.201-207
    • /
    • 2021
  • 인공지능이 점차 직무에 확대됨에 따라 비전공자에게 요구되는 AI 리터러시 역량을 갖춘 인재 육성이 필요하다. 이에 본 연구에서는 AI 교육의 필요성 및 현황을 기반으로 향후 전공과 관련하여 AI 학습이 지속 가능하도록 비전공자에 맞는 AI 리터러시 역량 향상 교육을 실시하였다. D 대학의 비전공자를 대상으로 프로젝트 기반 데이터 분석과 시각화를 통한 문제 해결방안 도출을 15주에 걸쳐 적용하고, 학습자들의 교육 전후에 대한 AI 능력 향상 및 효과성을 분석하여 검증하였다. 그 결과, 학습자들의 데이터 분석 및 활용 능력, AI 리터러시 능력, AI 자기효능감 부분에서 통계적으로 유의미한 수준의 긍정적 변화를 확인할 수 있었다. 특히, 학습자들에게 공공데이터를 직접 활용하여 분석하고 시각화하는 능력뿐만 아니라 이를 AI 활용과 연결하여 문제를 해결할 수 있는 자기효능감까지 향상시켰다. 이는 비전공자의 AI 교육에 매우 유용하고 효과성이 있음을 확인할 수 있다. 향후 본 연구를 바탕으로 AI 활용을 확장하여 데이터와 AI 기술을 일상 속에서 자유롭게 활용 가능하도록 다양한 계열의 비전공자에 맞는 확장된 AI 교육 과정 연구를 진행할 예정이다.

ChatGPT, 생성형 AI 시대 도서관의 데이터 리터러시 교육에 대한 연구 (A Study on the Data Literacy Education in the Library of the Chat GPT, Generative AI Era)

  • 이정미
    • 한국문헌정보학회지
    • /
    • 제57권3호
    • /
    • pp.303-323
    • /
    • 2023
  • 본 연구의 목적은 ChatGPT와 같은 생성형 AI 시대를 맞아 이와 같은 언어모델에 대해 소개하고, 이를 활용한 도서관의 데이터 리터러시 교육 구성요소를 고민하고 방향을 제시하고자 하는 연구이다. 이를 위해 다음과 같은 세 가지 연구 문제를 제시하였다. 먼저 ChatGPT 유사 언어모델의 기술적 특징을 살펴보고, 이후 생성형 인공지능 기술 기반 서비스 플랫폼을 활용하여 적합한, 정확한 정보를 유용하게 활용하기 위한 이용자의 데이터 리터러시 역량 교육의 필요성을 주창하였다. 마지막으로 ChatGPT 시대 도서관 데이터 리터러시 교육을 위해 데이터에 대한 이해, 데이터 생성, 데이터 수집, 데이터 검증, 데이터 관리, 데이터 이용 및 공유, 데이터 윤리와 같은 7개 구성항목을 포함한 데이터 리터러시 교육 구성안을 제안하였다. 결론적으로 ChatGPT와 같은 생성형 인공지능 기술이 이용자의 정보 활용에 많은 영향을 미치게 될 것이라 예상되는 만큼 도서관은 이러한 기술의 장단점, 문제점 등에 대해 한발 먼저 고민하고 이를 통해 도서관의 정보서비스를 한층 개선할 수 있는 토대로 삼아야 할 것을 강조하며 마무리했다.

비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계 (Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities)

  • 백수진;신윤희
    • 디지털융복합연구
    • /
    • 제19권5호
    • /
    • pp.285-293
    • /
    • 2021
  • 4차 산업혁명 시대가 도래함에 따라 다양한 산업 분야에서 AI 활용역량이 강조되고 있다. 그러나 현재 보편적 교육으로서의 AI 교육 설계 연구 및 역량 중심교육 커리큘럼 연구가 부족하다. 본 연구에서는 대학에서의 비전공자를 위한 역량 중심 AI 리터러시 함양을 위한 보편적 AI 교육을 설계하는 데 목적을 둔다. 인문계열 AI 기초교육 설계를 위해 3차에 걸쳐 전문가 대상으로 설문을 진행하였고, 그 결과를 반영하여 도출된 설계 내용의 신뢰도를 검증하였다. 그 결과, AI 리터러시 함양을 위한 주요역량은 데이터 리터러시, AI 이해 및 활용능력이었으며, 이를 토대로 도출된 주요 세부 영역으로는 데이터 구조 이해 및 가공, 시각화, 워드클라우드, 공공데이터 활용, 머신러닝 개념 이해 및 활용이었다. 본 연구를 통해 도출된 교육 설계 내용은 향후 역량 중심의 AI 보편적 교육의 필요성과 가치를 높일 수 있을 것으로 기대한다.

텍스트 마이닝 분석기법을 활용한 인공지능 리터러시 및 인공지능 융합 교육에 관한 인식 연구 (A Study on the Perception of Artificial Intelligence Literacy and Artificial Intelligence Convergence Education Using Text Mining Analysis Techniques)

  • 윤혁;김정랑
    • 정보교육학회논문지
    • /
    • 제26권6호
    • /
    • pp.553-566
    • /
    • 2022
  • 본 논문에서는 포털 사이트와 RISS에서 소셜 데이터와 학술 연구 데이터를 수집하고 TF-IDF, N-Gram, 의미 연결망 분석, CONCOR 분석을 실시하였다. 이를 통해 사회적 인식 양상과 현 상황을 파악하고, 시사점과 방향성을 제시하고자 하였다. 소셜 데이터에서 '인공지능 리터러시'보다 '인공지능 융합 교육'의 수집량이 2배 이상 많아 '인공지능 리터러시'에 관한 인식이 상대적으로 적은 것으로 나타났다. '인공지능 리터러시'에 소셜 데이터에서 '인간' 키워드는 소속된 군집이 없는 것으로 나타나 인문학 및 인공지능과 인간의 대한 철학적인 관심과 인식이 부족한 것으로 나타났다. 또한 '교육부' 키워드가 '인공지능 융합 교육'의 소셜 데이터에서만 빈도, 중요도, 연결 중심성이 모두 높게 나타나 '인공지능 융합 교육'이 정부의 정책과 관련 깊은 것이 확인되었다.

초등학생의 데이터 리터러시 함양을 위한 AI 데이터 과학 교육 프로그램 개발 (Development of AI Data Science Education Program to Foster Data Literacy of Elementary School Students)

  • 홍지연;김영식
    • 정보교육학회논문지
    • /
    • 제24권6호
    • /
    • pp.633-641
    • /
    • 2020
  • 인공지능으로 구현되는 지능과 데이터 및 네트워크 기술에 기반한 지능정보기술의 발전은 사회 전반에 혁신을 유발하고 광범위한 사회, 경제적 파급력을 보여주고 있다. 이에 국외는 물론 국내에서도 다가오는 미래사회를 이끌어갈 인재 양성을 위해 AI 교육을 서두르고 있는 실정이다. 데이터는 인공지능의 중요한 부분으로서 데이터를 수집, 처리, 분석하여 데이터 기반의 의사결정을 할 수 있는 데이터 리터러시는 AI 소양과 더불어 함께 신장시켜야 할 중요한 역량으로 볼 수 있다. 따라서 본 연구에서는 초등학생의 데이터 리터러시를 키워줄 수 있는 AI 데이터과학 교육 프로그램을 개발하여 이를 실험반에 적용, 사전-사후 대응표본 t-test를 통해 그 효과성을 검증하였다. 그 결과 데이터 리터러시의 네 가지 세부 역량인 데이터 이해, 수집, 분석, 표현에서 모두 통계적으로 유의미하게 향상된 결과를 나타내어 AI 데이터과학 교육 프로그램이 학생들의 데이터 리터러시 향상에 효과적임을 알 수 있었다.

초·중등 인공지능 교육을 위한 데이터 리터러시 정의 연구 (A Study on the Definition of Data Literacy for Elementary and Secondary Artificial Intelligence Education)

  • 김슬기;김태영
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.59-67
    • /
    • 2021
  • AI 기술의 발달은 우리 삶의 큰 변화를 가져왔다. 생활 속에서부터 사회, 경제에 이르기 까지 AI의 영향력이 커짐에 따라 AI와 데이터에 대한 교육에 대한 중요성이 함께 커지고 있다. 특히 OECD 교육 연구 보고서 및 다양한 국내 정보과 교육과정 연구에서 데이터와 데이터 리터러시를 다루고 필수 역량으로 제시하고 있다. 국내외 연구를 살펴 보면 데이터 리터러시에 대한 정의는 연구자들 마다 그 구체적인 내용과 범위가 다른 것을 알 수 있다. 이에 데이터 리터러시 관련 주요 연구의 정의를 다각도로 분석하여 도출하고자 하였다. 주요 연구에서 데이터 리터러시를 정의를 하는데 사용된 단어 빈도 분석과 함께 Word2vec 자연어 처리 방법을 활용하여 의미 유사도를 분석하고 교육과정 연구의 내용요소를 바탕으로 최종적으로 유목화하여 '데이터를 읽고 쓸 수 있으며, 실생활의 문제를 해결하기 위해 데이터를 이해하고 사용하여 정보로 처리하는 지식 구성의 기초 능력' 의 정의를 도출하였다. 본 연구를 통해 도출된 데이터 리터러시의 정의를 바탕으로 내용이 수정 보완되고 더 많은 연구가 이루어져 학생들의 미래 역량을 키워주는 교육 연구에 좋은 기초 자료가 될 수 있기를 기대한다.

  • PDF

예비교사의 데이터 리터러시 역량 증진을 위한 빅데이터 분석 교양강좌의 개발 및 적용 (The Development and Application of the Big Data Analysis Course for the Improvement of the Data Literacy Competency of Teacher Training College Students)

  • 김슬기;김태영
    • 정보교육학회논문지
    • /
    • 제26권2호
    • /
    • pp.141-151
    • /
    • 2022
  • 최근, 급격히 발전하는 미래 디지털 사회를 살아갈 학생들의 디지털 리터러시와 데이터 리터러시 관련 기초소양 교육이 강조되고 있다. 이에 일반 대학과 교육 대학에서도 기초소양으로서 빅데이터 및 데이터 리터러시 향상을 위한 교육의 수요가 많아지고 있다. 이에 본 연구는 예비교사를 위한 빅데이터 분석 교양강좌를 설계 및 적용하고 데이터 리터러시에 미치는 영향을 분석하였다. 투입 프로그램에 대한 흥미도와 이해도 분석 결과, 예비교사의 수준에 적절한 형태임을 확인했으며, 데이터 리터러시의 '지식', '기능', '가치와 태도'의 모든 영역에서 유의미한 역량의 향상이 있는 것을 확인하였다. 본 연구의 결과가 체계적인 데이터 리터러시 관련 교육 연구에 도움을 주어 학생과 예비교사들의 데이터 리터러시를 증진하는데 이바지할 수 있기를 기대한다.

초·중등 AI 교육을 위한 데이터 리터러시 정의 및 구성 요소 연구 (A Study of the Definition and Components of Data Literacy for K-12 AI Education)

  • 김슬기;김태영
    • 정보교육학회논문지
    • /
    • 제25권5호
    • /
    • pp.691-704
    • /
    • 2021
  • AI 기술의 발달은 우리 삶의 큰 변화를 가져왔다. 생활에서부터 사회, 경제에 이르기까지 AI의 영향력이 커짐에 따라 AI와 데이터 교육에 대한 중요성이 함께 커지고 있다. 이에 OECD 교육 연구 보고서 및 다양한 국내 정보과 교육과정 연구에서 데이터와 데이터 리터러시를 다루고 필수 역량으로 제시하고 있다. 하지만 국내외 관련 연구를 살펴보면 데이터 리터러시에 대한 정의와 구성 요소의 내용과 범위가 연구자에 따라 다른 것을 알 수 있다. 이에 데이터 리터러시 관련 주요 연구의 정의와 구성 요소에 활용된 단어 빈도 분석과 함께 Word2Vec 딥러닝 자연어 처리 방법을 통해 단어의 관계와 의미 유사도를 분석하여 객관적이고 포괄적인 정의와 구성 요소를 제시하였다. 그리고 전문가 검토를 통해 수정 보완하여 데이터 리터러시를 '문제를 해결하기 위해 데이터를 수집하고 분석 및 활용하여 정보로 처리하는 지식 구성과 의사소통의 기초 능력'으로 정의하였으며, '지식, 기능, 가치와 태도'로 각각의 구성 요소를 범주화하였다. 본 연구를 통해 도출된 데이터 리터러시의 정의와 구성 요소가 AI 교육 체계화와 학생들의 미래 역량 관련 교육 연구에 좋은 기초 자료가 될 수 있기를 기대한다.

데이터 리터러시를 위한 머신러닝 기반 AI 융합 수업 모형 개발 (Development of AI Convergence Education Model Based on Machine Learning for Data Literacy)

  • 강상우;이유진;임효정;최원근
    • 산업과 과학
    • /
    • 제3권1호
    • /
    • pp.1-16
    • /
    • 2024
  • 본 연구는 고등학교 학생들의 데이터 리터러시를 함양할 수 있는 머신러닝 기반 AI 융합 수업 모형과 수업 설계 원리를 개발하고, 그에 따른 상세 지침을 개발하는 것을 목적으로 하였다. 이를 위해 선행 문헌 연구를 통해 머신러닝을 기반으로 한 수업 모형과 설계 원리 및 상세 지침을 개발하고, 서울 소재 상업계열 특성화고등학교 학생 15명에게 적용하여 실행하였다. 연구 결과 학생들의 데이터 리터러시가 통계적으로 유의미(p< .001)하게 향상되었으므로 본 연구의 수업 모형이 학습자의 데이터 리터러시 향상에 긍정적인 영향을 주었음을 확인할 수 있었고, 앞으로 관련 연구로 이어지길 기대한다.

데이터 리터러시 연구 분야의 주경로와 지적구조 분석 (Analyzing the Main Paths and Intellectual Structure of the Data Literacy Research Domain)

  • 이재윤
    • 정보관리학회지
    • /
    • 제40권4호
    • /
    • pp.403-428
    • /
    • 2023
  • 이 연구에서는 데이터 리터러시 분야 연구의 발전 경로와 지적구조 및 떠오르는 유망 주제를 파악하고자 하였다. 이를 위해서 Web of Science에서 검색한 데이터 리터러시 관련 논문은 교육학 분야와 문헌정보학 분야 논문이 전체의 60% 가까이를 차지하였다. 우선 인용 네트워크 분석에서는 페이지랭크 알고리즘을 사용해서 인용 영향력이 높은 다양한 주제의 핵심 논문을 파악하였다. 데이터 리터러시 연구의 발전 경로를 파악하기 위해서 기존의 주경로분석법을 적용해보았으나 교육학 분야의 연구 논문만 포함되는 한계가 있었다. 이를 극복할 수 있는 새로운 기법으로 페이지랭크 주경로분석법을 개발한 결과, 교육학 분야와 문헌정보학 분야의 핵심 논문이 모두 포함되는 발전 경로를 파악할 수 있었다. 데이터 리터러시 연구의 지적구조를 분석하기 위해서 키워드 서지결합 분석을 시행하였다. 도출된 키워드 서지결합 네트워크의 세부 구조와 군집 파악을 위해서 병렬최근접이웃클러스터링 알고리즘을 적용한 결과 대군집 2개와 그에 속한 소군집 7개를 파악할 수 있었다. 부상하는 유망 주제를 도출하기 위해서 각 키워드와 군집의 성장지수와 평균출판년도를 측정하였다. 분석 결과 팬데믹 상황과 AI 챗봇의 부상이라는 시대적 배경 하에서 사회정의를 위한 비판적 데이터 리터러시가 고등교육 측면에서 급부상하고 있는 것으로 나타났다. 또한 이 연구에서 연구의 발전경로를 파악하는 수단으로 새롭게 개발한 페이지랭크 주경로분석 기법은 서로 다른 영역에서 병렬적으로 발전하는 둘 이상의 연구흐름을 발견하기에 효과적이었다.