• Title/Summary/Keyword: AI 기법

Search Result 586, Processing Time 0.03 seconds

An Efficient Dynamic Workload Balancing Strategy (DNN을 이용한 중환자 상태 징후 조기 예측)

  • Hyun-Suk Yoon;Gil-Sik Park;Hae-Jong Joo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.325-327
    • /
    • 2024
  • 국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.

  • PDF

A Review of the Methodology for Sophisticated Data Classification (정교한 데이터 분류를 위한 방법론의 고찰)

  • Kim, Seung Jae;Kim, Sung Hwan
    • Journal of Integrative Natural Science
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • 전 세계적으로 인공지능(AI)을 구현하려는 움직임이 많아지고 있다. AI구현에서는 많은 양의 데이터, 목적에 맞는 데이터의 분류 등 데이터의 중요성을 뺄 수 없다. 이러한 데이터를 생성하고 가공하는 기술에는 사물인터넷(IOT)과 빅데이터(Big-data) 분석이 있으며 4차 산업을 이끌어 가는 원동력이라 할 수 있다. 또한 이러한 기술은 국가와 개인 차원에서 많이 활용되고 있으며, 특히나 특정분야에 집결되는 데이터를 기준으로 빅데이터 분석에 활용함으로써 새로운 모델을 발견하고, 그 모델로 새로운 값을 추론하고 예측함으로써 미래비전을 제시하려는 시도가 많아지고 있는 추세이다. 데이터 분석을 통한 결론은 데이터가 가지고 있는 정보의 정확성에 따라 많은 변화를 가져올 수 있으며, 그 변화에 따라 잘못된 결과를 발생시킬 수도 있다. 이렇듯 데이터의 분석은 데이터가 가지는 정보 또는 분석 목적에 맞는 데이터 분류가 매우 중요하다는 것을 알 수 있다. 또한 빅데이터 분석결과 통계량의 신뢰성과 정교함을 얻기 위해서는 각 변수의 의미와 변수들 간의 상관관계, 다중공선성 등을 고려하여 분석해야 한다. 즉, 빅데이터 분석에 앞서 분석목적에 맞도록 데이터의 분류가 잘 이루어지도록 해야 한다. 이에 본 고찰에서는 AI기술을 구현하는 머신러닝(machine learning, ML) 기법에 속하는 분류분석(classification analysis, CA) 중 의사결정트리(decision tree, DT)기법, 랜덤포레스트(random forest, RF)기법, 선형분류분석(linear discriminant analysis, LDA), 이차선형분류분석(quadratic discriminant analysis, QDA)을 이용하여 데이터를 분류한 후 데이터의 분류정도를 평가함으로써 데이터의 분류 분석률 향상을 위한 방안을 모색하려 한다.

Annotation Method for Reliable Video Data (신뢰성 영상자료를 위한 어노테이션 기법)

  • Yun-Hee Kang;Taeun Kwon
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • With the recent increase in the use of artificial intelligence, AI TRiSM data management within organizations has become important, and thus securing data reliability has emerged as an essential requirement for data-based decision-making. Digital content is transmitted through the unreliable Internet to the cloud where the digital content storage is located, then used in various applications. When detecting anomaly of data, it is difficult to provide a function to check content modification due to its damage in digital content systems. In this paper, we design a technique to guarantee the reliability of video data by expanding the function of data annotation. The designed annotation technique constitutes a prototype based on gRPC to handle a request and a response in a webUI that generates classification label and Merkle tree of given video data.

  • PDF

A Study on AI Evolution Trend based on Topic Frame Modeling (인공지능발달 토픽 프레임 연구 -계열화(seriation)와 통합화(skeumorph)의 사회구성주의 중심으로-)

  • Kweon, Sang-Hee;Cha, Hyeon-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.66-85
    • /
    • 2020
  • The purpose of this study is to explain and predict trends the AI development process based on AI technology patents (total) and AI reporting frames in major newspapers. To that end, a summary of South Korean and U.S. technology patents filed over the past nine years and the AI (Artificial Intelligence) news text of major domestic newspapers were analyzed. In this study, Topic Modeling and Time Series Return Analysis using Big Data were used, and additional network agenda correlation and regression analysis techniques were used. First, the results of this study were confirmed in the order of artificial intelligence and algorithm 5G (hot AI technology) in the AI technical patent summary, and in the news report, AI industrial application and data analysis market application were confirmed in the order, indicating the trend of reporting on AI's social culture. Second, as a result of the time series regression analysis, the social and cultural use of AI and the start of industrial application were derived from the rising trend topics. The downward trend was centered on system and hardware technology. Third, QAP analysis using correlation and regression relationship showed a high correlation between AI technology patents and news reporting frames. Through this, AI technology patents and news reporting frames have tended to be socially constructed by the determinants of media discourse in AI development.

An analysis of public perception on Artificial Intelligence(AI) education using Big Data: Based on News articles and Twitter (빅데이터 분석을 통해 본 AI교육에 대한 사회적 인식: 뉴스기사와 트위터를 중심으로)

  • Lee, Sang-Soog;Yoo, Inhyeok;Kim, Jinhee
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 2020
  • The purpose of this study is to understand the public needs for AI education actively promoted and supported by the current government. In doing so, 11 metropolitan news articles and Twitter posts regarding AI education that have been posted from January 1, 2018 to December 31, 2019 were collected. Then, word frequency analysis using TF(Term Frequency) method and LDA(Latent Dirichlet Allocation) method of topic modeling analysis were conducted. The topics of the news articles turn out to be a macroscopic policy support such as 'training female manpower in the AI field' and 'curriculum reform of university and K-12', whereas the topics of twitter delineate more detailed social perception on future society, such as future competencies and pedagogical methods, including 'coexistence with intelligent robots', 'coding education', and 'humane education competence development'. The findings are expected to be used to suggest the implications for the composition and management of AI curriculum as well as the basic framework of human resources development in the future industry.

The Development of Property Prediction Model in Consideration of Biodegradable Fiber Spinning Process Data Characteristics (생분해성 섬유 방사 공정 데이터 특성을 고려한 물성 예측 모델 개발)

  • Park, SeChan;Kim, Deok Yeop;Seo, Kang Bok;Lee, Woo Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.362-365
    • /
    • 2022
  • 최근 노동 집약적인 성격의 섬유 산업에서는 AI를 통해 공정에 들어가는 시간과 비용을 줄이고 품질을 최적화 하려는 시도를 하고 있다. 그러나 섬유 방사 공정은 데이터 수집에 필요한 비용이 크고 체계적인 데이터 처리 시스템이 부족하여 축적된 데이터양이 적다. 또 방사 목적에 따라 특정 변수 위주의 조합에 대한 데이터만을 우선적으로 수집하여 데이터 불균형이 발생하며, 물성 측정환경 차이로 인해 동일 방사조건에서 수집된 샘플 간에도 오차가 존재한다. 이러한 데이터 특성들을 고려하지 않고 AI 모델에 활용할 경우 과적합과 성능 저하 등의 문제가 발생할 수 있다. 따라서 본 논문에서는 물성 단위 및 허용오차를 고려한 이상치 처리 기법과 데이터 불균형 정도 및 물성과의 상관성을 고려한 오버샘플링 기법을 물성 예측 모델에 적용한다. 두 기법들을 모델에 적용한 결과 그렇지 않은 모델에 비해 물성 예측 오차와 방사 공정 데이터에 대한 모델의 적합도가 개선됨을 보인다.

A Preliminary Study on Semantic Segmentation Techniques for Environment Recognition of Walking Assistant Robot (보행 보조 로봇의 환경 인지를 위한 의미론적 영상 분할 기법에 관한 준비 연구)

  • Lee, SeoYoung;Park, JiSung;Kim, KangGeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.841-844
    • /
    • 2021
  • 보행 환경 인지 기술은 보행 보조 로봇의 지능화를 위한 핵심 기술 중 하나다. 이 논문은 국내 보행 환경에 대한 보행 보조 로봇의 인지 지능을 고도화하는 방법으로 심층 학습 기반의 의미론적 영상 분할 기법을 고려한다. 이 논문은 국내 보행 환경에 대한 기존 영상 분할 기법의 성능을 비교 분석하고, 국내 보행 환경에 적합한 영상 분할 기술의 개발 방향과 인지 센서의 구성 및 배치에 대해 논한다.

Optimization of Sensor Data Window Size for Deep Learning Regression Model (딥러닝 회귀 모델 개발을 위한 센서 데이터 윈도우 사이즈 최적화 기법)

  • Choi, Min-Seo;Yoo, Dong-Yeon;Lee, Jung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.610-613
    • /
    • 2022
  • 센서 데이터의 중요성이 커지면서 센서 데이터 처리 연구의 수요가 증가하고 있다. 센서 데이터 기반의 딥러닝 모델 개발 시, 센서 데이터 단일 값에 의한 출력이 아닌 시계열적인 특성을 반영하여 연속적인 데이터 간의 연관성을 파악할 수 있는 슬라이딩 윈도우 기법을 통해 효율적으로 데이터를 분석하고 처리할 수 있다. 하지만, 기존의 방법들은 학습 성능(학습 시간 및 모델 성능)에 미치는 영향을 평가하는 기준 없이 입력 데이터의 윈도우 사이즈를 임의로 설정하여 데이터를 처리해 왔다. 따라서, 본 논문은 학습 시간과 모델 성능을 기준으로 센서 데이터의 윈도우 사이즈 최적화 기법을 제안한다. 제안한 방법은 전류를 이용하여 스위치와 다이오드 온도를 추정하는 가상 센서(virtual sensor) 실험 테스트베드에 적용하여, 학습 시간 중심으로는 5%의 윈도우 사이즈를, 모델 성능 중심으로는 R2 SCORE 의 값을 0.9295 로 갖는 8%의 윈도우 사이즈가 최적으로 도출되었다.

Prompt Engineering Technique for efficient use of ChatGPT (ChatGPT 를 효율적으로 사용하기 위한 Prompt Engineering 기법 )

  • Gyeong-Won Jang;Seong-Soo Han
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.595-597
    • /
    • 2023
  • 대규모 언어 모델에 기반한 AI 챗봇인 ChatGPT 의 사용과 출력 품질을 개선하는 데 있어 Prompt Engineering 의 중요성이 확대되고 있다. Prompt Engineering 은 AI 모델에서 보다 정확하고 관련성 높은 응답을 생성하기 위해 프롬프트의 요소를 선택하고 구성하는 작업을 포함한다. 본 논문에서는 ChatGPT 에서 정보나 답변을 효과적으로 추출하는 데 사용할 수 있는 다양한 Prompt Engineering 기법을 소개하고 이러한 기법이 실제 시나리오에 어떻게 적용될 수 있는지에 대한 예를 제공한다.

Knowledge Mining from Many-valued Triadic Dataset based on Concept Hierarchy (개념계층구조를 기반으로 하는 다치 삼원 데이터집합의 지식 추출)

  • Suk-Hyung Hwang;Young-Ae Jung;Se-Woong Hwang
    • Journal of Platform Technology
    • /
    • v.12 no.3
    • /
    • pp.3-15
    • /
    • 2024
  • Knowledge mining is a research field that applies various techniques such as data modeling, information extraction, analysis, visualization, and result interpretation to find valuable knowledge from diverse large datasets. It plays a crucial role in transforming raw data into useful knowledge across various domains like business, healthcare, and scientific research etc. In this paper, we propose analytical techniques for performing knowledge discovery and data mining from various data by extending the Formal Concept Analysis method. It defines algorithms for representing diverse formats and structures of the data to be analyzed, including models such as many-valued data table data and triadic data table, as well as algorithms for data processing (dyadic scaling and flattening) and the construction of concept hierarchies and the extraction of association rules. The usefulness of the proposed technique is empirically demonstrated by conducting experiments applying the proposed method to public open data.

  • PDF