• Title/Summary/Keyword: AI 기법

Search Result 586, Processing Time 0.022 seconds

Development of Artificial Inetelligence Education Program for the Lower Grades of Elementary School (초등학교 저학년 학습자를 위한 인공지능 교육프로그램 개발)

  • Kang, Ji-eun;Koo, Dukhoi
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.761-768
    • /
    • 2021
  • Recently, various platforms and contents for artificial intelligence education have been developed, but artificial intelligence education programs for the lower grades of elementary school are insufficient. Therefore, the purpose of this study is to develop an artificial intelligence education program for learners in the lower grades of elementary school. It was designed using the Novel Engineering with various convergence education research cases for software education. After the first program was developed, it was verified by expert validity test, and the program was modified and developed accordingly. It was necessary to construct a program based on spoken language rather than written language in consideration of the level of learners in the lower grades in the process of acquiring Hangeul, and to secure the number of educational hours through integration between subjects. It is expected that this study can suggest a new direction for artificial intelligence education for elementary and lower grade learners.

Using a Hybrid Model of DEA and Decision Tree Algorithm C5.0 to Evaluate the Efficiency of Ports (DEA와 의사결정 나무(C5.0)의 하이브리드 모델을 사용한 항만의 효율성 평가)

  • Hong, Han-Kook;Leem, Byung-hak;Kim, Sam-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.99-109
    • /
    • 2019
  • Data Envelopment Analysis (DEA), a non-parametric productivity analysis tool, has become an accepted approach for assessing efficiency in a wide range of fields. Despite of its extensive applications, some features of DEA remain bothersome. For example DEA is good at estimating "relative" efficiency of a DMU(Decision Making Unit), it only tells us how well we are doing compared with our peers but not compared with a "theoretical maximum." Thus, in order to measure efficiency of a new DMU, we have to develop entirely new DEA with the data of previously used DMUs. Also we cannot predict the efficiency level of the new DMU without another DEA analysis. We aim to show that DEA can be used to evaluate the efficiency of ports and suggest the methodology which overcomes the limitation of DEA through hybrid analysis utilizing DEA along with C5.0. We can generate classification rules C5.0 in order to classify any new Port without perturbing previously existing evaluation structures by proposed methodology.

The Analysis of Research Trends in Technology to the Fourth Industrial Revolution using SNA (소셜 네트워크 분석을 이용한 4차 산업혁명 기술 분야의 연구 동향 분석)

  • Kim, Hong-Gwang;Ahn, Jong-Wook
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.113-121
    • /
    • 2019
  • The fourth industrial revolution technology focused on the fusion of infrastructure and various advanced technologies related city. Therefore, technical cooperation in various fields of research is essential. In order to activating the fourth industrial revolution technologies, it is necessary to research the state of technology in various fields. Consequently, this paper aims to analysis of domestic and foreign research trends on technology to the fourth industrial revolution using SNA and text mining for web site. We collected text, date data of research paper and report in web site for five years, that is, from January 1st in 2014 to December 31st in 2018. Next, we have deduced the major keywords in public data through analyzing the morphemes. Then we have analyzed the core and related keyword lists through an SNA. In Korea, the focus is on R&D and legal/institutional solution in relation to the fourth industrial revolution technology. On the other hand, in the case of foreign, there was focus on practical technologies for urban services in detail aspects.

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

Determination of coagulant input rate in water purification plant using K-means algorithm and GBR algorithm (K-means 알고리즘과 GBR 알고리즘을 이용한 정수장 응집제 투입률 결정 기법)

  • Kim, Jinyoung;Kang, Bokseon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.792-798
    • /
    • 2021
  • In this paper, an algorithm for determining the coagulant input rate in the drug-injection tank during the process of the water purification plant was derived through big data analysis and prediction based on artificial intelligence. In addition, analysis of big data technology and AI algorithm application methods and existing academic and technical data were reviewed to analyze and review application cases in similar fields. Through this, the goal was to develop an algorithm for determining the coagulant input rate and to present the optimal input rate through autonomous driving simulator and pilot operation of the coagulant input process. Through this study, the coagulant injection rate, which is an output variable, is determined based on various input variables, and it is developed to simulate the relationship pattern between the input variable and the output variable and apply the learned pattern to the decision-making pattern of water plant operating workers.

Network Security Modeling and Simulation Using the SES/MB Framework (SES/MB 프레임워크를 이용한 네트워크 보안 모델링 및 시뮬레이션)

  • 지승도;박종서;이장세;김환국;정기찬;정정례
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.2
    • /
    • pp.13-26
    • /
    • 2001
  • This paper presents the network security modeling methodology and simulation using the hierarchical and modular modeling and simulation framework. Recently, Howard and Amoroso developed the cause-effect model of the cyber attack, defense, and consequences, Cohen has been proposed the simplified network security simulation methodology using the cause-effect model, however, it is not clear that it can support more complex network security model and also the model-based cyber attack simulation. To deal with this problem, we have adopted the hierarchical and modular modeling and simulation environment so called the System Entity Structure/Model Base (SES/MB) framework which integrates the dynamic-based formalism of simulation with the symbolic formalism of AI. Several simulation tests performed on sample network system verify the soundness of our method.

A Study on the Employee Turnover Prediction using XGBoost and SHAP (XGBoost와 SHAP 기법을 활용한 근로자 이직 예측에 관한 연구)

  • Lee, Jae Jun;Lee, Yu Rin;Lim, Do Hyun;Ahn, Hyun Chul
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.21-42
    • /
    • 2021
  • Purpose In order for companies to continue to grow, they should properly manage human resources, which are the core of corporate competitiveness. Employee turnover means the loss of talent in the workforce. When an employee voluntarily leaves his or her company, it will lose hiring and training cost and lead to the withdrawal of key personnel and new costs to train a new employee. From an employee's viewpoint, moving to another company is also risky because it can be time consuming and costly. Therefore, in order to reduce the social and economic costs caused by employee turnover, it is necessary to accurately predict employee turnover intention, identify the factors affecting employee turnover, and manage them appropriately in the company. Design/methodology/approach Prior studies have mainly used logistic regression and decision trees, which have explanatory power but poor predictive accuracy. In order to develop a more accurate prediction model, XGBoost is proposed as the classification technique. Then, to compensate for the lack of explainability, SHAP, one of the XAI techniques, is applied. As a result, the prediction accuracy of the proposed model is improved compared to the conventional methods such as LOGIT and Decision Trees. By applying SHAP to the proposed model, the factors affecting the overall employee turnover intention as well as a specific sample's turnover intention are identified. Findings Experimental results show that the prediction accuracy of XGBoost is superior to that of logistic regression and decision trees. Using SHAP, we find that jobseeking, annuity, eng_test, comm_temp, seti_dev, seti_money, equl_ablt, and sati_safe significantly affect overall employee turnover intention. In addition, it is confirmed that the factors affecting an individual's turnover intention are more diverse. Our research findings imply that companies should adopt a personalized approach for each employee in order to effectively prevent his or her turnover.

Development of a Sign Language Learning Assistance System using Mediapipe for Sign Language Education of Deaf-Mutility (청각장애인의 수어 교육을 위한 MediaPipe 활용 수어 학습 보조 시스템 개발)

  • Kim, Jin-Young;Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1355-1362
    • /
    • 2021
  • Recently, not only congenital hearing impairment, but also the number of people with hearing impairment due to acquired factors is increasing. The environment in which sign language can be learned is poor. Therefore, this study intends to present a sign language (sign language number/sign language text) evaluation system as a sign language learning assistance tool for sign language learners. Therefore, in this paper, sign language is captured as an image using OpenCV and Convolutional Neural Network (CNN). In addition, we study a system that recognizes sign language behavior using MediaPipe, converts the meaning of sign language into text-type data, and provides it to users. Through this, self-directed learning is possible so that learners who learn sign language can judge whether they are correct dez. Therefore, we develop a sign language learning assistance system that helps us learn sign language. The purpose is to propose a sign language learning assistance system as a way to support sign language learning, the main language of communication for the hearing impaired.

Efficient Object Recognition by Masking Semantic Pixel Difference Region of Vision Snapshot for Lightweight Embedded Systems (경량화된 임베디드 시스템에서 의미론적인 픽셀 분할 마스킹을 이용한 효율적인 영상 객체 인식 기법)

  • Yun, Heuijee;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.813-826
    • /
    • 2022
  • AI-based image processing technologies in various fields have been widely studied. However, the lighter the board, the more difficult it is to reduce the weight of image processing algorithm due to a lot of computation. In this paper, we propose a method using deep learning for object recognition algorithm in lightweight embedded boards. We can determine the area using a deep neural network architecture algorithm that processes semantic segmentation with a relatively small amount of computation. After masking the area, by using more accurate deep learning algorithm we could operate object detection with improved accuracy for efficient neural network (ENet) and You Only Look Once (YOLO) toward executing object recognition in real time for lightweighted embedded boards. This research is expected to be used for autonomous driving applications, which have to be much lighter and cheaper than the existing approaches used for object recognition.

Q-Learning Policy and Reward Design for Efficient Path Selection (효율적인 경로 선택을 위한 Q-Learning 정책 및 보상 설계)

  • Yong, Sung-Jung;Park, Hyo-Gyeong;You, Yeon-Hwi;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.72-77
    • /
    • 2022
  • Among the techniques of reinforcement learning, Q-Learning means learning optimal policies by learning Q functions that perform actionsin a given state and predict future efficient expectations. Q-Learning is widely used as a basic algorithm for reinforcement learning. In this paper, we studied the effectiveness of selecting and learning efficient paths by designing policies and rewards based on Q-Learning. In addition, the results of the existing algorithm and punishment compensation policy and the proposed punishment reinforcement policy were compared by applying the same number of times of learning to the 8x8 grid environment of the Frozen Lake game. Through this comparison, it was analyzed that the Q-Learning punishment reinforcement policy proposed in this paper can significantly increase the learning speed compared to the application of conventional algorithms.