• 제목/요약/키워드: AI 기법

검색결과 586건 처리시간 0.024초

대형 언어 모델의 한국어 Text-to-SQL 변환 능력 평가 (Evaluation of Large Language Models' Korean-Text to SQL Capability)

  • 최주영;민경구;심묘섭;정해민;박민준;최정규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.171-176
    • /
    • 2023
  • 최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.

  • PDF

An Analysis of Artificial Intelligence Education Research Trends Based on Topic Modeling

  • You-Jung Ko
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.197-209
    • /
    • 2024
  • 본 연구의 목적은 국내 인공지능 교육의 최근 연구 동향을 분석하여 향후 인공지능 교육의 방향성을 모색하는 것이다. 2016년부터 2023년 11월까지 RISS(Research Information Sharing Service)에 게재된 논문 중 인공지능 교육 관련 논문 697편을 대상으로 워드 클라우드(Word Cloud)와 LDA 토픽 모델링(Latent Dirichlet Allocation Topic Modeling) 기법을 활용하여 분석하였다. 분석결과, 주요 토픽으로는 생성형 인공지능 활용 교육, 인공지능 윤리 교육, 인공지능 융합 교육, 인공지능 활용에 대한 교사 인식과 역할, 대학 교육에서 인공지능 리터러시(Literacy) 개발, 인공지능 기반 교육과 연구 방향으로 여섯 가지가 도출되었다. 분석결과를 토대로, (1) 다양한 교과목에 생성형 인공지능 활용 확대, (2) 인공지능 사용을 위한 윤리적 지침, (3) 인공지능 교육의 장기적 영향 평가, (4) 고등교육에서 교사의 인공지능 활용 역량, (5) 대학의 인공지능 교육과정 다양화, (6) 인공지능 연구 추이 분석 및 교육 플랫폼(Platform) 개발 등을 제안하였다.

설명 가능 그래프 심층 인공신경망 기반 속도 예측 및 인근 도로 영향력 분석 기법 (Speed Prediction and Analysis of Nearby Road Causality Using Explainable Deep Graph Neural Network)

  • 김유진;윤영
    • 한국융합학회논문지
    • /
    • 제13권1호
    • /
    • pp.51-62
    • /
    • 2022
  • 교통 혼잡을 해결하기 위한 AI 기반 속도 예측 연구는 활발하게 진행되고 있다. 하지만, 인공지능의 추론 과정을 설명하는 설명 가능한 AI의 중요성이 대두되고 있는 가운데 AI 기반 속도 예측의 결과를 해석하고 원인을 추리하는 연구는 미흡하였다. 따라서 본 논문에서는 '설명 가능 그래프 심층 인공신경망 (GNN)'을 고안하여 속도 예측뿐만 아니라, GNN 모델 입력값의 마스킹 기법에 기반하여 인근 도로 영향력을 정량적으로 분석함으로써 혼잡 등의 상황에 대한 추론 근거를 도출하였다. TOPIS 통행 속도 데이터를 활용하여 서울 시내 혼잡 도로를 기준으로 예측 및 분석 방법론을 적용한 후 영향력 높은 인근 도로의 속도를 가상으로 조절하는 시뮬레이션 통하여 혼잡 도로의 통행 속도가 개선됨을 확인하여 제안한 방법론의 타당성을 입증하였다. 이는 교통 네트워크에 제안한 방법론을 적용하고, 그 추론 결과에 기반한 특정 인근 도로를 제어하여 교통 흐름을 개선할 수 있다는 점에 의미가 있다.

YOLO 기반 실종자 수색 AI 응용 시스템 구현 (Implementation of YOLO based Missing Person Search Al Application System)

  • 김하연;김종훈;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.159-170
    • /
    • 2023
  • 실종자 수색은 많은 시간과 인력이 필요하다. 그 해결책의 일환으로 YOLO 기반 모델을 활용하여 실종자 수색 AI 시스템을 구현하였다. 객 객체 탐지 모델을 훈련하기 위해 AI-Hub에서 드론 이동체 인지 영상(도로 고정)을 수집하고 모델을 학습하였다. 또한, 훈련 데이터 세트와 상이한 환경에서의 성능을 평가하기 위해 산악 환경 데이터 세트를 추가 수집하였다. 실종자 수색 AI 시스템의 최적화를 위해 모델 크기 및 하이퍼파라미터에 따른 성능평가, 과대적합 우려에 대한 추가 성능평가를 시행하였다. 성능평가 결과 YOLOv5-L 모델이 우수한 성능을 보이는 것을 확인할 수 있었으며 데이터 증강 기법을 적용함에 따라 모델의 성능이 보다 향상되었다. 이후 웹 서비스에는 데이터 증강 기법을 적용한 YOLOv5-L 모델을 적용하여 실종자 수색의 효율성을 높였다.

인공지능 노출 정도에 따른 고용 추세 분석: K자형 고용 양극화 (Analyzing employment trends in response to AI exposure: K-shaped labor polarization in Korea)

  • 이예슬;황현준
    • 정보화정책
    • /
    • 제30권3호
    • /
    • pp.69-91
    • /
    • 2023
  • 기술 발전이 고용에 미치는 영향은 자동화에 의한 대체 또는 새로운 업무 도입에 따른 고용 증가 등 여전한 논쟁의 대상이다. 특히 인공지능 기술 발전과 고용에 대한 실증 논의는 더욱 부족한 실정이다. 이에 본 연구는 자연어처리 기법(SBERT)과 특허를 이용하여 직업별 인공지능 노출 점수를 계산하고 평균 점수를 기준으로 상위 집단과 하위 집단으로 구분하여 집단별 고용 추세를 분석한다. 자연어처리 기법을 통해 한국 특허와 미국 직업의 업무 설명을 연계하는 인공지능 노출 점수 계산 방식과 한미 표준직업분류 연계 방식을 제시하고 이를 국내 고용 통계에 적용하여 추세를 분석한다. 2013년 이후 국내 인공지능 출원 특허와 통계청 지역별고용조사를 분석한 결과 한국의 고용은 시간이 지남에 따라 평균 이상의 인공지능 노출 집단에서 우상향하고, 평균 이하 집단에서는 우하향하는 K자형 양극화 양상을 보인다.

Attention 기법에 기반한 적대적 공격의 강건성 향상 연구 (Improving Adversarial Robustness via Attention)

  • 김재욱;오명교;박래현;권태경
    • 정보보호학회논문지
    • /
    • 제33권4호
    • /
    • pp.621-631
    • /
    • 2023
  • 적대적 학습은 적대적 샘플에 대한 딥러닝 모델의 강건성을 향상시킨다. 하지만 기존의 적대적 학습 기법은 입력단계의 작은 섭동마저도 은닉층의 특징에 큰 변화를 일으킨다는 점을 간과하여 adversarial loss function에만집중한다. 그 결과로 일반 샘플 또는 다른 공격 기법과 같이 학습되지 않은 다양한 상황에 대한 정확도가 감소한다. 이 문제를 해결하기 위해서는 특징 표현 능력을 향상시키는 모델 아키텍처에 대한 분석이 필요하다. 본 논문에서는 입력 이미지의 attention map을 생성하는 attention module을 일반 모델에 적용하고 PGD 적대적학습을수행한다. CIFAR-10 dataset에서의 제안된 기법은 네트워크 구조에 상관없이 적대적 학습을 수행한 일반 모델보다 적대적 샘플에 대해 더 높은 정확도를 보였다. 특히 우리의 접근법은 PGD, FGSM, BIM과 같은 다양한 공격과 더 강력한 adversary에 대해서도 더 강건했다. 나아가 우리는 attention map을 시각화함으로써 attention module이 적대적 샘플에 대해서도 정확한 클래스의 특징을 추출한다는 것을 확인했다.

키워드 네트워크 분석을 활용한 과학기술동향 분석 (Analysis of Trends in Science and Technology using Keyword Network Analysis)

  • 박주섭;김나랑;한은정
    • 한국산업정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.63-73
    • /
    • 2018
  • 학계나 연구소에서는 연구동향이나 과학기술동향을 파악하고 예측하기 위해 전문가들의 판단에 의존하는 정성적인 방법을 주로 활용하여 왔다. 이 기법은 많은 시간과 비용이 드는 단점이 있기에 본 논문에서는 키워드 네트워크 분석을 활용하여 과학기술 동향을 예측하였다. 이를 위해 미국 특허 중 AI(Artificial Intelligence) 특허 초록 13,618개를 대상으로 키워드 네트워크 분석을 활용하여 분석 1기(2002.1.1. ~ 2006.12.31.), 분석 2기(2007.1.1. ~ 2011.12.31.), 분석 3기(2012.1.1. ~ 2016.12.31.)로 구분하여 분석하였다. 빈도 분석 결과, 분석 1기에서 3기로 시간이 경과할수록 AI 응용 분야의 방법에 관련된 핵심어들이 부각되었다. 키워드 네트워크 분석에서도 시간이 경과함에 따라 응용 분야의 방법에 관련된 핵심어와 다른 핵심어 간의 연계성이 높아졌다. 또한 분석 전체 기간 중 상승 및 하락 추세를 보인 연계 핵심어를 분석하면 응용 분야의 방법과 관리에 대한 연계성은 강화되는 반면에 기초 분야의 연계성은 약화되었다. 키워드 연결 중심성 분석에서도 기간이 경과할수록 응용 분야에 대한 중심성 수치가 높았다. 키워드 매개 중심성 분석에서 분석 3기는 응용 분야의 방법론 관련 핵심어가 가장 높은 매개 수치를 보였다. 이는 앞으로 응용 분야의 방법들이 AI 분야의 강력한 중개자 역할을 할 것으로 예상된다. 본 논문에서 제시한 기법은 지역혁신과 관련된 과제 발굴이나 사회문제 이슈의 시각화 등 지역혁신 분야에 활용되어 질 수 있을 것이다.

오픈 도메인 대화를 위한 노이징된 가이드 기반 생성 모델 (Noised Guide-based Generative Model for Open-domain Conversation)

  • 금빛나;김홍진;박상민;김재은;황금하;권오욱;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.82-87
    • /
    • 2022
  • 대화 모델은 대표적으로 검색 모델 또는 생성 모델을 기반으로 구현된다. 최근에는 두 모델의 장점은 융합하고 단점은 보완하기 위해 검색 기법과 생성 기법을 결합하는 연구가 활발히 이루어지고 있다. 그러나 생성 모델이 검색된 응답을 전혀 반영하지 않고 응답을 생성하여 검색 모델을 간과하는 문제 또는 검색된 응답을 그대로 복사해 생성하여 검색 모델에 과의존하는 문제가 발생한다. 본 논문에서는 이러한 문제들을 완화하며 검색 모델과 생성 모델을 모두 조화롭게 활용할 수 있는 대화 모델을 제안한다. 생성 모델이 검색 모델을 간과하는 문제를 완화하기 위해 학습 시 골드 응답을 검색된 응답과 함께 사용한다. 또한, 검색 모델에 과의존하는 문제를 완화하기 위해 검색된 응답들의 내용어 일부를 마스킹하고 순서를 무작위로 섞어 노이징한다. 검색된 응답은 대화 컨텍스트와의 관련성이 높은 것만을 선별하여 생성에 활용한다. 정량 평가 및 정성 평가를 통해 제안한 방법의 성능 향상 효과를 확인하였다.

  • PDF

Latent vector 분포 조정을 활용한 DCGAN 기반 이모지 생성 기법 (DCGAN-based Emoji Generation exploiting Adjustment of Latent vector Representation)

  • 송윤경;하유진;성아영;김건우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.603-605
    • /
    • 2023
  • 최근 SNS 의 발달로 인해 자신의 감정을 빠르고 효과적으로 전달할 수 있는 이모지의 중요성이 커지고 있다. 하지만 이모지를 수동으로 생성하기 위해서 시간과 비용이 많이 들고 자신의 감정에 맞는 이모지를 찾아야 하며 해당 이모지가 없을 수 있다. 기존 DCGAN 을 활용한 이모지 자동 생성연구에서는 부족한 데이터셋으로 인해 G(Generator)와 D(Discriminator)가 동등하게 학습하지 못해서 두 모델 간 성능 차이가 발생한다. D 가 G 보다 최적해에 빠르게 수렴하여 G 가 학습이 되지 않아 낮은 품질의 이모지를 생성하는 불안정 문제가 발생한다. 이 문제를 해결하기 위해 본 논문에서는 Latent vector 분포를 데이터셋에 맞게 조정하여 적은 데이터로 G 에서 안정적으로 학습할 수 있게 하는 G 구조와 다양한 이모지 생성을 위한 Latent vector 평균 조정 기법을 제안한다. 비교 실험 결과 불안정 문제를 개선하였고 FID 와 IS 수치를 통해 성능 개선 효과를 검증했다.