• Title/Summary/Keyword: AI 개발

Search Result 1,380, Processing Time 0.022 seconds

An Automatic Data Collection System for Human Pose using Edge Devices and Camera-Based Sensor Fusion (엣지 디바이스와 카메라 센서 퓨전을 활용한 사람 자세 데이터 자동 수집 시스템)

  • Young-Geun Kim;Seung-Hyeon Kim;Jung-Kon Kim;Won-Jung Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.189-196
    • /
    • 2024
  • Frequent false positives alarm from the Intelligent Selective Control System have raised significant concerns. These persistent issues have led to declines in operational efficiency and market credibility among agents. Developing a new model or replacing the existing one to mitigate false positives alarm entails substantial opportunity costs; hence, improving the quality of the training dataset is pragmatic. However, smaller organizations face challenges with inadequate capabilities in dataset collection and refinement. This paper proposes an automatic human pose data collection system centered around a human pose estimation model, utilizing camera-based sensor fusion techniques and edge devices. The system facilitates the direct collection and real-time processing of field data at the network periphery, distributing the computational load that typically centralizes. Additionally, by directly labeling field data, it aids in constructing new training datasets.

AI Chatbot-Based Daily Journaling System for Eliciting Positive Emotions (긍정적 감정 유발을 위한 AI챗봇기반 일기 작성 시스템)

  • Jun-Hyeon Kim;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.105-112
    • /
    • 2024
  • In contemporary society, the expression of emotions and self-reflection are considered pivotal factors with a positive impact on stress management and mental well-being, thereby highlighting the significance of journaling. However, traditional journaling methods have posed challenges for many individuals due to constraints in terms of time and space. Recent rapid advancements in chatbot and emotion analysis technologies have garnered significant attention as essential tools to address these issues. This paper introduces an artificial intelligence chatbot that integrates the GPT-3 model and emotion analysis technology, detailing the development process of a system that automatically generates journals based on users' chat data. Through this system, users can engage in journaling more conveniently and efficiently, fostering a deeper understanding of their emotions and promoting positive emotional experiences.

A Study on the Surface Damage Detection Method of the Main Tower of a Special Bridge Using Drones and A.I. (드론과 A.I.를 이용한 특수교 주탑부 표면 손상 탐지 방법 연구)

  • Sungjin Lee;Bongchul Joo;Jungho Kim;Taehee Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.129-136
    • /
    • 2023
  • A special offshore bridge with a high pylon has special structural features.Special offshore bridges have inspection blind spots that are difficult to visually inspect. To solve this problem, safety inspection methods using drones are being studied. In this study, image data of the pylon of a special offshore bridge was acquired using a drone. In addition, an artificial intelligence algorithm was developed to detect damage to the pylon surface. The AI algorithm utilized a deep learning network with different structures. The algorithm applied the stacking ensemble learning method to build a model that formed the ensemble and collect the results.

Reinforcement Learning Based Energy Control Method for Smart Energy Buildings Integrated with V2G Station (강화학습 기반 V2G Station 연계형 스마트 에너지 빌딩 전력 제어 기법)

  • Seok-Min Choi;Sun-Yong Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.515-522
    • /
    • 2024
  • Energy consumption is steadily increasing, and buildings in particular account for more than 20% of the total energy consumption around the world. As an effort to cost-effectively manage the energy consumption of buildings, many research groups have recently focused on Smart Building Energy Management Systems (BEMS), which are deepening the research depth by applying artificial intelligence(AI). In this paper, we propose a reinforcement learning-based energy control method for smart energy buildings integrated with V2G station, which aims to reduce the total energy cost of the building. The results of performance evaluation based on the energy consumption data measured in the real-world building shows that the proposed method can gradually reduce the total energy costs of the building as the learning process progresses.

A Study on the Development of Artificial Intelligence Human Resources in Healthcare at College (전문대학 헬스케어 분야 인공지능 인력양성에 관한 연구)

  • Yong-Min Park
    • Journal of the Health Care and Life Science
    • /
    • v.11 no.1
    • /
    • pp.67-77
    • /
    • 2023
  • This paper aims as a prior study to cultivate artificial intelligence professionals at the level of colleges in the future by analyzing healthcare services and technologies using artificial intelligence technology. As artificial intelligence technology is recognized as a key engine or core technology in the future that will create national competitiveness and added value, advanced countries are investing a lot of attention and support in developing technologies as well as human resources at the national level. Korea is also promoting national-level R&D manpower training projects such as AI graduate program support projects, and investing heavily in fostering and securing its own artificial intelligence personnel, mainly by large companies, but there is a lack of artificial intelligence experts. This study analyzes the current status of healthcare services and technologies, industries, and artificial intelligence manpower training using artificial intelligence technology, and proposes directions for fostering artificial intelligence personnel at the level of colleges.

Considerations for the Improving Domestic Personal Information Protection Act in accordance with The Life Cycle of Personal Information In Generative Artificial Intelligence Model: Comparative analysis of GDPR and Personal Information Protection Act of Korea (생성형 인공지능 모델의 개인정보 라이프 사이클에 따른 국내 개인정보 보호법 개선 고려 요소: GDPR과 개인정보 보호법의 비교·분석)

  • Jaeyoung Jang
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.81-93
    • /
    • 2024
  • The purpose of this paper is to derive considerations when improving the Personal Information Protection Act based on the personal information protection life cycle of the generative artificial intelligence model as generative artificial intelligence models are introduced and used in Korea a lot. Through the study, the necessity of using open information in the collection stage, using personal information preservation technology in the learning stage, and preparing the basis for the development of protection technology in the holding stage was derived. It also revealed the necessity of managing the generated information in the generation and inference stage, re-learning in the limitation and destruction stage, and preparing a filtering basis. It is expected that the results of this study can be used to revise the Personal Information Protection Act and make policies in the future.

Artificial Intelligence-Based Construction Equipment Safety Technology (인공지능 기반 건설장비 안전 기술)

  • Young-Kyo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.566-573
    • /
    • 2024
  • Applying autonomous driving technology to construction sites is very difficult due to safety issues. However, the application of various positioning and sensing devices, such as cameras and radars, to construction equipment is very active. Based on these technological trends, the government is making various efforts, including the Serious Accident Punishment Act and support for industrial safety management expenses, to reduce the incidence of accidents caused by construction equipment and industrial vehicles. And, related industries have been developing various safety equipment over the past few years and applying them to the field. In this paper, we investigate the current status of safety equipment-related technologies currently applied to construction equipment and industrial vehicles, and propose a direction for the development of safety technology in construction equipment based on artificial intelligence. Improving the safety and work efficiency of construction equipment based on the technology proposed in this paper should be reviewed through simulation in the future.

Design and Development of Open-Source-Based Artificial Intelligence for Emotion Extraction from Voice

  • Seong-Gun Yun;Hyeok-Chan Kwon;Eunju Park;Young-Bok Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.79-87
    • /
    • 2024
  • This study aims to improve communication for people with hearing impairments by developing artificial intelligence models that recognize and classify emotions from voice data. To achieve this, we utilized three major AI models: CNN-Transformer, HuBERT-Transformer, and Wav2Vec 2.0, to analyze users' voices in real-time and classify their emotions. To effectively extract features from voice data, we applied transformation techniques such as Mel-Frequency Cepstral Coefficient (MFCC), aiming to accurately capture the complex characteristics and subtle changes in emotions within the voice. Experimental results showed that the HuBERT-Transformer model demonstrated the highest accuracy, proving the effectiveness of combining pre-trained models and complex learning structures in the field of voice-based emotion recognition. This research presents the potential for advancements in emotion recognition technology using voice data and seeks new ways to improve communication and interaction for individuals with hearing impairments, marking its significance.

Development of System for Enhancing the Quality of Power Generation Facilities Failure History Data Based on Explainable AI (XAI) (XAI 기반 발전설비 고장 기록 데이터 품질 향상 시스템 개발)

  • Kim Yu Rim;Park Jeong In;Park Dong Hyun;Kang Sung Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.3
    • /
    • pp.479-493
    • /
    • 2024
  • Purpose: The deterioration in the quality of failure history data due to differences in interpretation of failures among workers at power plants and the lack of consistency in the way failures are recorded negatively impacts the efficient operation of power plants. The purpose of this study is to propose a system that classifies power generation facilities failures consistently based on the failure history text data created by the workers. Methods: This study utilizes data collected from three coal unloaders operated by Korea Midland Power Co., LTD, from 2012 to 2023. It classifies failures based on the results of Soft Voting, which incorporates the prediction probabilities derived from applying the predict_proba technique to four machine learning models: Random Forest, Logistic Regression, XGBoost, and SVM, along with scores obtained by constructing word dictionaries for each type of failure using LIME, one of the XAI (Explainable Artificial Intelligence) methods. Through this, failure classification system is proposed to improve the quality of power generation facilities failure history data. Results: The results of this study are as follows. When the power generation facilities failure classification system was applied to the failure history data of Continuous Ship Unloader, XGBoost showed the best performance with a Macro_F1 Score of 93%. When the system proposed in this study was applied, there was an increase of up to 0.17 in the Macro_F1 Score for Logistic Regression compared to when the model was applied alone. All four models used in this study, when the system was applied, showed equal or higher values in Accuracy and Macro_F1 Score than the single model alone. Conclusion: This study propose a failure classification system for power generation facilities to improve the quality of failure history data. This will contribute to cost reduction and stability of power generation facilities, as well as further improvement of power plant operation efficiency and stability.

Virtual Reality Contents for Rehabilitation Training Utilizing Skeletal Data and Foot Pressure Mat (골격 데이터와 발 압력매트를 활용한 재활 훈련용 가상 현실 콘텐츠)

  • Jongwook Si;Hyeri Jeong;Sangjin Lee;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.330-338
    • /
    • 2024
  • With the growing interest in rehabilitation therapy and exercise programs, there is an increasing need for smart content that simultaneously addresses both health and engagement. Particularly, exercises performed in a state of physical imbalance carry a high risk of injury, making it essential to detect and integrate balance into the training process. This paper proposes Rehabilitation Training program that combines a pressure platform with virtual reality (VR) technology to address this issue. The program enables users to perform exercises such as squats, stationary walking, and forward-backward walking in a VR environment, utilizing real-time foot pressure data captured through a pressure mat. Additionally, an algorithm based on YOLOv8-pose extracted skeletal coordinates is proposed to assess body balance and automatically count squat repetitions. The experimental results showed an average accuracy of 87.9% for each posture, confirming that users can be provided with a safer, more efficient, and immersive training experience through this approach.