• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.028 seconds

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

The Trend of Aviation Terrorism in the 4th Industrial Revolution Period and the Development Direction for Domestic Counter Terrorism of Aviation (제4차 산업혁명 시대의 항공 테러리즘 양상 및 국내 항공테러 대응체계 발전방향)

  • Hwang, Ho-Won;Kim, Seung-Woo
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.2
    • /
    • pp.155-188
    • /
    • 2017
  • On the one hand, the 4th Industrial Revolution provides a positive opportunity to build a new civilization paradigm for mankind. However, on the other hand, due to the 4th Industrial Revolution, artificial intelligence such as 'Goggle Alpha Go' revolutionized and even the human ability was replaced with a 'Silicon Chip' as the opportunity to communicate decreases, the existence of human beings is weakened. And there is a growing concern that the number of violent crimes, such as psychopath, which hunts humans as games, will increase. Moreover, recent international terrorism is being developed in a form similar to 'Psychopathic Violent-Crime' that indiscriminately attacks innocent people. So, the probability that terrorist organizations abuse the positive effects provided by the Fourth Industrial Revolution as means of terrorism is increasing. Therefore, the paradigm of aviation terrorism is expected to change in a way that attacks airport facilities and users rather than aircraft. Because airport facilities are crowded, and psychopathic terrorists are easily accessible. From this point of view, our counter terrorism system of aviation has many weak points in various aspects such as: (1) limitations of counter-terrorism center (2) inefficient on-site command and control system (3) separated organization for aviation security consultation (4) dispersed information collection function in government (5) vulnerable to cyber attack (6) lack of international cooperation network for aviation terrorism. Consequently, it is necessary to improve the domestic counter terrorism system of aviation so as to preemptively respond to the international terrorism. This study propose the following measures to improve the aviation security system by (1) create 'Aviation Special Judicial Police' (2) revise the anti-terrorism law and aviation security law (3) Strengthening the ability respond to terrorism in cyberspace (4) building an international cooperation network for aviation terrorism.

  • PDF

The Need and Improvement Direction of New Computer Media Classes in Landscape Architectural Education in University (대학 내 조경전공 교육과정에 있어 새로운 컴퓨터 미디어 수업의 필요와 개선방향)

  • Na, Sungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • In 2020, civilized society's overall lifestyle showed a distinct change from consumable analog media, such as paper, to digital media with the increased penetration of cloud computing, and from wired media to wireless media. Based on these social changes, this work examines whether the use of computer media in the field of landscape architecture is appropriately applied. This study will give directions for new computer media classes in landscape architectural education in the 4th Industrial Revolution era. Landscape architecture is a field that directly proposes the realization of a positive lifestyle and the creation of a living environment and is closely connected with social change. However, there is no clear evidence that landscape architectural education is making any visible change, while the digital infrastructure of the 4th Industrial Revolution, such as Artificial Intelligence (AI), Big Data, autonomous vehicles, cloud networks, and the Internet of Things, is changing the contemporary society in terms of technology, culture, and economy among other aspects. Therefore, it is necessary to review the current state of the use of computer technology and media in landscape architectural education, and also to examine the alternative direction of the curriculum for the new digital era. First, the basis for discussion was made by studying the trends of computational design in modern landscape architecture. Next, the changes and current status of computer media classes in domestic and overseas landscape education were analyzed based on prior research and curriculum. As a result, the number and the types of computer media classes increased significantly between the study in 1994 and the current situation in 2020 in the foreign landscape department, whereas there were no obvious changes in the domestic landscape department. This shows that the domestic landscape education is passively coping with the changes in the digital era. Lastly, based on the discussions, this study examined alternatives to the new curriculum that landscape architecture department should pursue in a new degital world.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

A Study of Life Safety Index Model based on AHP and Utilization of Service (AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구)

  • Oh, Hye-Su;Lee, Dong-Hoon;Jeong, Jong-Woon;Jang, Jae-Min;Yang, Sang-Woon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.864-881
    • /
    • 2021
  • Purpose: This study aims is to provide a total care solution preventing disaster based on Big Data and AI technology and to service safety considered by individual situations and various risk characteristics. The purpose is to suggest a method that customized comprehensive index services to prevent and respond to safety accidents for calculating the living safety index that quantitatively represent individual safety levels in relation to daily life safety. Method: In this study, we use method of mixing AHP(Analysis Hierarchy Process) and Likert Scale that extracted from consensus formation model of the expert group. We organize evaluation items that can evaluate life safety prevention services into risk indicators, vulnerability indicators, and prevention indicators. And We made up AHP hierarchical structure according to the AHP decision methodology and proposed a method to calculate relative weights between evaluation criteria through pairwise comparison of each level item. In addition, in consideration of the expansion of life safety prevention services in the future, the Likert scale is used instead of the AHP pair comparison and the weights between individual services are calculated. Result: We obtain result that is weights for life safety prevention services and reflected them in the individual risk index calculated through the artificial intelligence prediction model of life safety prevention services, so the comprehensive index was calculated. Conclusion: In order to apply the implemented model, a test environment consisting of a life safety prevention service app and platform was built, and the efficacy of the function was evaluated based on the user scenario. Through this, the life safety index presented in this study was confirmed to support the golden time for diagnosis, response and prevention of safety risks by comprehensively indication the user's current safety level.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.