• 제목/요약/키워드: AI (artificial intelligence)

검색결과 1,999건 처리시간 0.03초

A Study on Tower Modeling for Artificial Intelligence Training in Artifact Restoration

  • Byong-Kwon Lee;Young-Chae Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.27-34
    • /
    • 2023
  • 본 논문은 인공지능(AI)을 이용하여 통일신라 석탑인 '경주 불국사 삼층석탑'의 복원을 위해 3D 모델링 과정을 연구했다. 기존의 3D 모델링 방식은 수많은 Verts와 Face를 생성하므로, 이로 인해 AI 학습에 상당한 시간이 소요한다. 이에 따라, Verts와 Face의 수를 낮추어 더 효율적인 3D 모델링을 수행하는 방식이 필요하다. 이를 위해, 본 연구에서는 석탑의 구조를 정점 및 면의 수로 분석하고, AI 학습에 최적화된 면수를을 최소화 하도록 모델링 방법을 연구했다. 더불어, 우리나라의 석탑 복원을 위한 인공지능학습에 최적화된 모델링 방법론을 제안하고, 인공지능 학습에 필요한 DataSet 을 확보하는 데 의미가 있다.

보건의료분야에서의 인공지능기술(AI) 사용 의도와 태도에 관한 연구 (Study on Intention and Attitude of Using Artificial Intelligence Technology in Healthcare)

  • 김장묵
    • 융합정보논문지
    • /
    • 제7권4호
    • /
    • pp.53-60
    • /
    • 2017
  • 본 연구는 UTAUT 모델을 이용하여 보건의료분야 대학생들의 인공지능기술(Artificial Intelligence Technology, AI)의 사용 의도와 태도에 영향을 미치는 요인들을 규명하기 위해 시행되었다. 연구대상은 278명의 대학생으로, 2016년 5월 15일부터 6월 14일까지 자기기입식 설문지를 통하여 자료를 수집하였다. 연구결과 성과기대, 사회적 영향, 업무의 유용성, 불안요인이 사용 의도에 유의미한 영향을 미치는 것으로 나타났다. 그리고 성과기대, 업무의 유용성, 불안요인은 태도에 유의미한 영향을 미치는 것으로 나타났으며, 사용 의도는 태도에 영향을 미치는 것으로 나타났다. 불안요인과 업무의 유용성이 태도에 미치는 직접 효과가 사용 의도에 의해 부분 매개하는 것으로 나타났다. 대학생들의 AI 기술에 대한 긍정적인 사용 의도와 태도를 높이기 위해서는 사실에 근거한 정확한 정보전달과 막연한 불안감을 줄이면서 성과기대, 사회적 영향, 인지된 유용성을 향상시키는 것이 중요한 것으로 나타났다.

기업의 인공지능 기술 도입에 영향을 미치는 요인 분석: 국내 기업 데이터를 이용한 실증연구 (Determinants of artificial intelligence adoption in firms: Evidence from Korean firm-level data)

  • 봉강호
    • 정보화정책
    • /
    • 제31권3호
    • /
    • pp.34-47
    • /
    • 2024
  • 디지털 전환이 급속도로 확산되고 있는 가운데, 인공지능(AI) 기술은 혁신과 생산성 향상을 견인할 핵심 동력으로 인식되고 있다. 그러나 현재 기업의 AI 도입에 영향을 미치는 요인에 대한 이해와 실증적 연구가 부족한 실정이다. 특히 대다수의 연구는 해외 연구자가 해외 기업 데이터를 분석한 것이며, 국내 연구는 객관성 및 시의성 측면에서 한계를 가지고 있다. 본 연구에서는 계량경제학적 분석을 통해 기업 단위에서 AI 도입 영향요인을 규명한다. 이를 위해 신기술 도입 영향요인에 관한 대표적 이론인 TOE(Technology-Organization-Environment) 프레임워크 관점에서 기술적, 조직적, 환경적 맥락의 요인을 도출하고, 과학기술정보통신부·한국지능정보사회진흥원의 「2022년 정보화통계조사」를 활용하여 11,601개 국내 기업 데이터를 이용한 로지스틱 회귀분석을 실시한다. 본 연구는 국내 선행연구의 한계점을 보완함으로써 AI 및 신기술 도입 영향요인에 관한 연구 문헌을 확장하고, 실증분석을 통해 시의성있는 증거와 시사점을 제공한다는 점에서 의의를 가진다.

중학생의 AI 핵심역량 측정을 위한 체크리스트 문항 개발 (Development of checklist questions to measure AI core competencies of middle school students)

  • 이은철;한정수
    • 사물인터넷융복합논문지
    • /
    • 제10권3호
    • /
    • pp.49-55
    • /
    • 2024
  • 본 연구는 중학생의 AI 역량 측정을 위한 체크리스트 문항을 개발하는 목적으로 수행되었다. 연구의 목적을 달성하기 위해서 문헌 분석과 문항개발 델파이 조사를 사용하였다. 문헌 분석을 위해 검색을 통해 국내 연구 2편, 국외 연구 5편, 교육부의 교육과정 보고서를 수집하였다. 수집된 자료를 분석해서 핵심역량 측정 요소를 구성하였다. 핵심역량 측정 요소는 인공지능의 이해(5개 요소), 인공지능 사고(5개 요소), 인공지능 활용(4개 요수), 인공지능 윤리(6개 요소), 인공지능 사회-정서(6개 요소)로 구성하였다. 구성된 측정 요소의 지식과 기능 그리고 태도를 고려하여, 31개 문항을 개발하였다. 개발된 문항은 1차 델파이 조사를 통해서 검증하였고, 수정의견에 따라 10개의 문항을 수정하였다. 2차 델파이 조사를 통해서 31개 문항의 타당성을 검증하였다. 본 연구에서 개발한 체크리스트 문항은 자기보고식 설문이 아닌 수행 및 행동 관찰을 기반으로 교사의 평가에 의해서 측정된다. 이에 측정 결과가 신뢰할 수 있는 수준이 높아진다는 시사점을 가지고 있다.

빅데이터 기반의 AI기초교양교육이 학부생의 정의적 태도에 미치는 영향 (An Analysis of the Influence big data analysis-based AI education on Affective Attitude towards Artificial Intelligence)

  • 오경선;김현정
    • 정보교육학회논문지
    • /
    • 제24권5호
    • /
    • pp.463-471
    • /
    • 2020
  • 4차 산업혁명시대는 인공지능(AI), 가상현실(VR), 빅데이터(BigData)와 같은 첨단 기술을 통해 사회전반에 걸쳐 총체적 변화가 나타난다. 이를 반영하듯 많은 나라들이 기술혁명시대에 우위를 선점하기 위해 AI 인재양성에 힘을 기울이고 있다. 우리나라도 AI인재양성 전략을 내놓고는 있지만 학부생에게는 AI 교육에 대한 접근이 쉽지는 않다. 이러한 현실에서 본 논문은 학부생이 쉽게 접근할 수 있는 빅데이터 분석 기반 AI 교육을 실시하여 AI교육에 대한 학부생의 정의적 태도 변화를 살펴보았다. 이를 위해 5주간(총 15시간)동안 데이터 분석 기반 AI 교육이 학부생들의 수준에 제공되었다. 그리고 단일 그룹의 사전-사후 검사를 통해 AI 교육에 대한 학부생들의 태도를 분석하였다. 분석 결과 AI 교육에 대한 자신감과 자기주도성이 향상되는 유의미한 결과를 얻었다. 이 연구의 결과를 토대로 현장에서 자기주도성과 자신감을 향상시킬 수 있는 AI기초교육개발에 대한 연구가 활발히 이루어지길 기대한다.

Trends in the Adoption of Artificial Intelligence for Enhancing Built Environment Efficiency: A Case Study Analysis

  • Habib SADRI;Ibrahim YITMEN
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.479-486
    • /
    • 2024
  • This study reviews the recently conducted case studies to explore the innovative integration of Artificial Intelligence (AI) and Machine Learning (ML) in the domain of building facility management and predictive maintenance. It systematically examines recent developments and applications of advanced computational methods, emphasizing their role in enhancing asset management accuracy, energy efficiency, and occupant comfort. The study investigates the implementation of various AI and ML techniques, such as regression methods, Artificial Neural Networks (ANNs), and deep learning models, demonstrating their utility in asset management. It also discusses the synergistic use of ML with domain-specific technologies such as Geographic Building Information Modeling (BIM), Information Systems (GIS), and Digital Twin (DT) technologies. Through a critical analysis of current trends and methodologies, the paper highlights the importance of algorithm selection based on data attributes and operational challenges in deploying sophisticated AI models. The findings underscore the transformative potential of AI and ML in facility management, offering insights into future research directions and the development of more effective, data-driven management strategies.

인공지능의 현장적용을 위한 KSB 인공지능 플랫폼 기술 (KSB Artificial Intelligence Platform Technology for On-site Application of Artificial Intelligence)

  • 이연희;강현중;김영민;김태환;안후영;유태완;이호성;임완선;김현재;표철식
    • 전자통신동향분석
    • /
    • 제35권2호
    • /
    • pp.28-37
    • /
    • 2020
  • Recently, the focus of research interest in artificial intelligence technology has shifted from algorithm development to application domains. Industrial sectors such as smart manufacturing, transportation, and logistics venture beyond automation to pursue digitalization of sites for intelligence. For example, smart manufacturing is realized by connecting manufacturing sites, autonomous reconfiguration, and optimization of manufacturing systems according to customer requirements to respond promptly to market needs. Currently, KSB Convergence Research Department is developing BeeAI-an on-site end-to-end intelligence platform. BeeAI offers end-to-end service pipeline configuration and DevOps technologies that can produce and provide intelligence services needed on-site. We are hopeful that in future, the BeeAI technology will become the base technology at various sites that require automation and intelligence.

4P기반의 K-12 대상 인공지능 교육을 위한 교육체계 개발 (Development of Artificial Intelligence Education System for K-12 Based on 4P)

  • 류혜인;조정원
    • 디지털융복합연구
    • /
    • 제19권1호
    • /
    • pp.141-149
    • /
    • 2021
  • 세계적으로 인공지능 기술의 급부상으로 인해 초·중등에서 실시하고 있는 SW(Software 이하 SW) 교육은 AI(Artificial Intelligence 이하 AI) 교육을 포함하여 확대되고 있는 추세이다. 이에 본 연구에서는 4P(Play, Problem Solving, Product Making, Project)기반 만5세 대상 유치원에서부터 고등학교까지 적용할 수 있는 AI 교육체계를 제시하고자 한다. 본 연구에서 제시하는 AI 교육체계는 학령별, 단계별로 적용할 수 있도록 4P기반의 Play(놀이), Problem Solving(문제해결), Product Making(제작), 그리고 Project(프로젝트) 4단계 교육전략을 설계하고, 수준을 AI 소양과 AI 개발이라는 2개의 영역으로 나누어 제시하였다. 개발된 AI 교육체계의 타당도를 검증하기 위하여 SW 교육 또는 AI 교육 경험이 있는 15명의 전문가를 대상으로 델파이 방법을 적용하였다. 검증 결과 도출된 AI 교육체계는 향후 학교급별 AI 교육을 위한 내용 체계를 개발하는데 기여할 수 있을 것이다.

인공지능 학습데이터 라벨링 정확도에 따른 인공지능 성능 (AI Performance Based On Learning-Data Labeling Accuracy)

  • 이지훈;신지은
    • 산업융합연구
    • /
    • 제22권1호
    • /
    • pp.177-183
    • /
    • 2024
  • 본 연구는 데이터의 품질이 인공지능(AI) 성능에 미치는 영향을 검토한다. 이를 위해, 데이터 특성변수(Feature)의 유사도와 클래스(Class) 구성의 불균형을 고려한 모의실험(Simulation)을 통해 라벨링 오류 수준이 인공지능의 성능에 미치는 영향을 비교 분석하였다. 그 결과, 특성변수 간 유사성이 높은 데이터에서는 특성 변수 간 유사성이 낮은 데이터에 비해 라벨링 정확도에 더 민감하게 반응하였으며, 클래스 불균형이 증가함에 따라 인공지능 정확도가 급격히 감소되는 경향을 관찰하였다. 이는 인공지능 학습데이터의 품질평가 기준 및 관련 연구를 위한 기초자료가 될 것이다.

특허데이터 기반 한국의 인공지능 경쟁력 분석 : 특허지표 및 토픽모델링을 중심으로 (Analysis of Korea's Artificial Intelligence Competitiveness Based on Patent Data: Focusing on Patent Index and Topic Modeling)

  • 이현상;차오신;신선영;김규리;오세환
    • 정보화정책
    • /
    • 제29권4호
    • /
    • pp.43-66
    • /
    • 2022
  • 인공지능 기술의 발전과 더불어 세계 각국의 인공지능 기술 특허를 둘러싼 경쟁도 치열해지고 있다. 2000년~2021년간 미국 특허청의 인공지능 기술 특허출원은 꾸준히 증가하고 있는 가운데 2010년대 들어 보다 가파른 성장세를 기록하고 있다. 특허지표를 통해 한국의 인공지능 기술경쟁력을 분석한 결과, 청각지능, 시각지능 등의 세부 분야에서 특허활동성, 영향력, 시장성 등이 우위에 있는 것으로 평가된다. 그러나, 주요국과 비교하여 한국의 인공지능 기술 특허는 양적 활동성, 시장성 확보 측면에서는 상대적으로 우수하나 기술 파급력은 다소 열위에 있는 것으로 나타난다. 최근 인공지능 기술 토픽으로 노이즈 캔슬링, 음성인식 등은 감소한 반면 모델학습 최적화, 스마트센서, 자율주행 등이 활성화되면서 성장이 기대되고 있다. 한국의 경우 사기탐지/보안, 의료 비전러닝 등의 분야에서 특허출원 성과가 다소 부족하여 분발이 요구된다.