본 논문은 인공지능(AI)을 이용하여 통일신라 석탑인 '경주 불국사 삼층석탑'의 복원을 위해 3D 모델링 과정을 연구했다. 기존의 3D 모델링 방식은 수많은 Verts와 Face를 생성하므로, 이로 인해 AI 학습에 상당한 시간이 소요한다. 이에 따라, Verts와 Face의 수를 낮추어 더 효율적인 3D 모델링을 수행하는 방식이 필요하다. 이를 위해, 본 연구에서는 석탑의 구조를 정점 및 면의 수로 분석하고, AI 학습에 최적화된 면수를을 최소화 하도록 모델링 방법을 연구했다. 더불어, 우리나라의 석탑 복원을 위한 인공지능학습에 최적화된 모델링 방법론을 제안하고, 인공지능 학습에 필요한 DataSet 을 확보하는 데 의미가 있다.
본 연구는 UTAUT 모델을 이용하여 보건의료분야 대학생들의 인공지능기술(Artificial Intelligence Technology, AI)의 사용 의도와 태도에 영향을 미치는 요인들을 규명하기 위해 시행되었다. 연구대상은 278명의 대학생으로, 2016년 5월 15일부터 6월 14일까지 자기기입식 설문지를 통하여 자료를 수집하였다. 연구결과 성과기대, 사회적 영향, 업무의 유용성, 불안요인이 사용 의도에 유의미한 영향을 미치는 것으로 나타났다. 그리고 성과기대, 업무의 유용성, 불안요인은 태도에 유의미한 영향을 미치는 것으로 나타났으며, 사용 의도는 태도에 영향을 미치는 것으로 나타났다. 불안요인과 업무의 유용성이 태도에 미치는 직접 효과가 사용 의도에 의해 부분 매개하는 것으로 나타났다. 대학생들의 AI 기술에 대한 긍정적인 사용 의도와 태도를 높이기 위해서는 사실에 근거한 정확한 정보전달과 막연한 불안감을 줄이면서 성과기대, 사회적 영향, 인지된 유용성을 향상시키는 것이 중요한 것으로 나타났다.
디지털 전환이 급속도로 확산되고 있는 가운데, 인공지능(AI) 기술은 혁신과 생산성 향상을 견인할 핵심 동력으로 인식되고 있다. 그러나 현재 기업의 AI 도입에 영향을 미치는 요인에 대한 이해와 실증적 연구가 부족한 실정이다. 특히 대다수의 연구는 해외 연구자가 해외 기업 데이터를 분석한 것이며, 국내 연구는 객관성 및 시의성 측면에서 한계를 가지고 있다. 본 연구에서는 계량경제학적 분석을 통해 기업 단위에서 AI 도입 영향요인을 규명한다. 이를 위해 신기술 도입 영향요인에 관한 대표적 이론인 TOE(Technology-Organization-Environment) 프레임워크 관점에서 기술적, 조직적, 환경적 맥락의 요인을 도출하고, 과학기술정보통신부·한국지능정보사회진흥원의 「2022년 정보화통계조사」를 활용하여 11,601개 국내 기업 데이터를 이용한 로지스틱 회귀분석을 실시한다. 본 연구는 국내 선행연구의 한계점을 보완함으로써 AI 및 신기술 도입 영향요인에 관한 연구 문헌을 확장하고, 실증분석을 통해 시의성있는 증거와 시사점을 제공한다는 점에서 의의를 가진다.
본 연구는 중학생의 AI 역량 측정을 위한 체크리스트 문항을 개발하는 목적으로 수행되었다. 연구의 목적을 달성하기 위해서 문헌 분석과 문항개발 델파이 조사를 사용하였다. 문헌 분석을 위해 검색을 통해 국내 연구 2편, 국외 연구 5편, 교육부의 교육과정 보고서를 수집하였다. 수집된 자료를 분석해서 핵심역량 측정 요소를 구성하였다. 핵심역량 측정 요소는 인공지능의 이해(5개 요소), 인공지능 사고(5개 요소), 인공지능 활용(4개 요수), 인공지능 윤리(6개 요소), 인공지능 사회-정서(6개 요소)로 구성하였다. 구성된 측정 요소의 지식과 기능 그리고 태도를 고려하여, 31개 문항을 개발하였다. 개발된 문항은 1차 델파이 조사를 통해서 검증하였고, 수정의견에 따라 10개의 문항을 수정하였다. 2차 델파이 조사를 통해서 31개 문항의 타당성을 검증하였다. 본 연구에서 개발한 체크리스트 문항은 자기보고식 설문이 아닌 수행 및 행동 관찰을 기반으로 교사의 평가에 의해서 측정된다. 이에 측정 결과가 신뢰할 수 있는 수준이 높아진다는 시사점을 가지고 있다.
4차 산업혁명시대는 인공지능(AI), 가상현실(VR), 빅데이터(BigData)와 같은 첨단 기술을 통해 사회전반에 걸쳐 총체적 변화가 나타난다. 이를 반영하듯 많은 나라들이 기술혁명시대에 우위를 선점하기 위해 AI 인재양성에 힘을 기울이고 있다. 우리나라도 AI인재양성 전략을 내놓고는 있지만 학부생에게는 AI 교육에 대한 접근이 쉽지는 않다. 이러한 현실에서 본 논문은 학부생이 쉽게 접근할 수 있는 빅데이터 분석 기반 AI 교육을 실시하여 AI교육에 대한 학부생의 정의적 태도 변화를 살펴보았다. 이를 위해 5주간(총 15시간)동안 데이터 분석 기반 AI 교육이 학부생들의 수준에 제공되었다. 그리고 단일 그룹의 사전-사후 검사를 통해 AI 교육에 대한 학부생들의 태도를 분석하였다. 분석 결과 AI 교육에 대한 자신감과 자기주도성이 향상되는 유의미한 결과를 얻었다. 이 연구의 결과를 토대로 현장에서 자기주도성과 자신감을 향상시킬 수 있는 AI기초교육개발에 대한 연구가 활발히 이루어지길 기대한다.
The 10th International Conference on Construction Engineering and Project Management
/
pp.479-486
/
2024
This study reviews the recently conducted case studies to explore the innovative integration of Artificial Intelligence (AI) and Machine Learning (ML) in the domain of building facility management and predictive maintenance. It systematically examines recent developments and applications of advanced computational methods, emphasizing their role in enhancing asset management accuracy, energy efficiency, and occupant comfort. The study investigates the implementation of various AI and ML techniques, such as regression methods, Artificial Neural Networks (ANNs), and deep learning models, demonstrating their utility in asset management. It also discusses the synergistic use of ML with domain-specific technologies such as Geographic Building Information Modeling (BIM), Information Systems (GIS), and Digital Twin (DT) technologies. Through a critical analysis of current trends and methodologies, the paper highlights the importance of algorithm selection based on data attributes and operational challenges in deploying sophisticated AI models. The findings underscore the transformative potential of AI and ML in facility management, offering insights into future research directions and the development of more effective, data-driven management strategies.
Recently, the focus of research interest in artificial intelligence technology has shifted from algorithm development to application domains. Industrial sectors such as smart manufacturing, transportation, and logistics venture beyond automation to pursue digitalization of sites for intelligence. For example, smart manufacturing is realized by connecting manufacturing sites, autonomous reconfiguration, and optimization of manufacturing systems according to customer requirements to respond promptly to market needs. Currently, KSB Convergence Research Department is developing BeeAI-an on-site end-to-end intelligence platform. BeeAI offers end-to-end service pipeline configuration and DevOps technologies that can produce and provide intelligence services needed on-site. We are hopeful that in future, the BeeAI technology will become the base technology at various sites that require automation and intelligence.
세계적으로 인공지능 기술의 급부상으로 인해 초·중등에서 실시하고 있는 SW(Software 이하 SW) 교육은 AI(Artificial Intelligence 이하 AI) 교육을 포함하여 확대되고 있는 추세이다. 이에 본 연구에서는 4P(Play, Problem Solving, Product Making, Project)기반 만5세 대상 유치원에서부터 고등학교까지 적용할 수 있는 AI 교육체계를 제시하고자 한다. 본 연구에서 제시하는 AI 교육체계는 학령별, 단계별로 적용할 수 있도록 4P기반의 Play(놀이), Problem Solving(문제해결), Product Making(제작), 그리고 Project(프로젝트) 4단계 교육전략을 설계하고, 수준을 AI 소양과 AI 개발이라는 2개의 영역으로 나누어 제시하였다. 개발된 AI 교육체계의 타당도를 검증하기 위하여 SW 교육 또는 AI 교육 경험이 있는 15명의 전문가를 대상으로 델파이 방법을 적용하였다. 검증 결과 도출된 AI 교육체계는 향후 학교급별 AI 교육을 위한 내용 체계를 개발하는데 기여할 수 있을 것이다.
본 연구는 데이터의 품질이 인공지능(AI) 성능에 미치는 영향을 검토한다. 이를 위해, 데이터 특성변수(Feature)의 유사도와 클래스(Class) 구성의 불균형을 고려한 모의실험(Simulation)을 통해 라벨링 오류 수준이 인공지능의 성능에 미치는 영향을 비교 분석하였다. 그 결과, 특성변수 간 유사성이 높은 데이터에서는 특성 변수 간 유사성이 낮은 데이터에 비해 라벨링 정확도에 더 민감하게 반응하였으며, 클래스 불균형이 증가함에 따라 인공지능 정확도가 급격히 감소되는 경향을 관찰하였다. 이는 인공지능 학습데이터의 품질평가 기준 및 관련 연구를 위한 기초자료가 될 것이다.
인공지능 기술의 발전과 더불어 세계 각국의 인공지능 기술 특허를 둘러싼 경쟁도 치열해지고 있다. 2000년~2021년간 미국 특허청의 인공지능 기술 특허출원은 꾸준히 증가하고 있는 가운데 2010년대 들어 보다 가파른 성장세를 기록하고 있다. 특허지표를 통해 한국의 인공지능 기술경쟁력을 분석한 결과, 청각지능, 시각지능 등의 세부 분야에서 특허활동성, 영향력, 시장성 등이 우위에 있는 것으로 평가된다. 그러나, 주요국과 비교하여 한국의 인공지능 기술 특허는 양적 활동성, 시장성 확보 측면에서는 상대적으로 우수하나 기술 파급력은 다소 열위에 있는 것으로 나타난다. 최근 인공지능 기술 토픽으로 노이즈 캔슬링, 음성인식 등은 감소한 반면 모델학습 최적화, 스마트센서, 자율주행 등이 활성화되면서 성장이 기대되고 있다. 한국의 경우 사기탐지/보안, 의료 비전러닝 등의 분야에서 특허출원 성과가 다소 부족하여 분발이 요구된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.