• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.034 seconds

Design of Omok AI using Genetic Algorithm and Game Trees and Their Parallel Processing on the GPU (유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법)

  • Ahn, Il-Jun;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.66-75
    • /
    • 2010
  • This paper proposes an efficient method for design and implementation of the artificial intelligence (AI) of 'omok' game on the GPU. The proposed AI is designed on a cooperative structure using min-max game tree and genetic algorithm. Since the evaluation function needs intensive computation but is independently performed on a lot of candidates in the solution space, it is computed on the GPU in a massive parallel way. The implementation on NVIDIA CUDA and the experimental results show that it outperforms significantly over the CPU, in which parallel game tree and genetic algorithm on the GPU runs more than 400 times and 300 times faster than on the CPU. In the proposed cooperative AI, selective search using genetic algorithm is performed subsequently after the full search using game tree to search the solution space more efficiently as well as to avoid the thread overflow. Experimental results show that the proposed algorithm enhances the AI significantly and makes it run within the time limit given by the game's rule.

Integrating AI Generative Art and Gamification in an Art Education Model to Enhance Creative Thinking (AI 생성예술과 게임화 요소가 통합된 미술 교육 모델 개발 : 창의적 사고 향상)

  • Li Jun;Kim Yoojin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.425-433
    • /
    • 2023
  • In this study, we developed a virtual artist play lesson model using gamification concepts and AI-generated art programs to foster creative thinking in freshman art majors. Targeting first-year students in the Digital Media Art Department at Sichuan Film & Television University in China, this course aims to alleviate fear of artistic creation and enhance problem-solving abilities. The educational model consists of four stages: persona creation, creative writing, text visualization, and virtual exhibitions. Through persona creation, students established their artist identities, and by introducing game-like elements into writing experiences, they discovered their latent creativity. Using AI-generated art programs for text visualization, students gained confidence in their creations, and in the virtual exhibitions, they were able to enhance their self-esteem as artists by appreciating and evaluating each other's works. This educational model offers a new approach to promoting creative thinking and problem-solving skills while increasing learner engagement and interest. Based on these research findings, we expect that by developing and implementing educational strategies that cultivate creative thinking, more students will grow their artistic capacities and creativity, benefiting not only art majors but also students from various fields.

The Effects of Subjective Beliefs and Values on Use Intention of Artificial Intelligence Robots: Difference according to Occupation and Employment (인공지능 로봇에 대한 주관적 신념과 가치가 이용의도에 미치는 영향: 직종 및 고용형태에 따른 차이 비교)

  • Seok, SeungHye
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.536-550
    • /
    • 2018
  • This paper examine how acceptance of AI robots can be achieved according to occupational groups when the discourse on human labor and occupation changes due to the new industrial revolution is spreading steadily. Previous research on the acceptance of new technologies and products has predicted use behavior through subjective beliefs and values that do not change well over the short term. Therefore, this study compares the beliefs, values, and use intention of AI robots according to occupation. As a result, the subjective belief factor for AI robots was classified into belief in rationality(reason) and belief in benevolence(emotion). The value factors were divided into acceptance value(role performance, communication, social comparison) and avoidance value(risk, complexity). There was a significant difference in the effect of these on the use intention of AI robot by occupation and employment types. This result suggests that there are gaps in the occupation group at the rate of technology acceptance, as opposed to the existing prediction that AI robots will be rapidly expanded by professionals.

A Study of AI Education Program Based on Big Data: Case Study of the General Education High School (빅데이터 기반 인공지능 교육프로그램 연구: 일반계 고등학교 사례를 중심으로)

  • Ye-Hee, Jeong;Hyoungbum, Kim;Ki Rak, Park;Sang-Mi, Yoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • The purpose of this research is to develop a creative education program that utilizes AI education program based on big data for general education high schools, and to investigate its effectiveness. In order to achieve the purpose of the research, we developed a creative education program using artificial intelligence based on big data for first-year general high school students, and carried out on-site classes at schools and a validation process by experts. In order to measure the creative problem-solving ability and class satisfaction of high school students, a creative problem-solving ability test was conducted before and after the program application, and a class satisfaction test was conducted after the program. The results of this study are as follows. First, AI education program based on big data were statistically effective to improve the creative problem solving ability according to independent sample t test about 'problem discovery and analysis', 'idea generation', 'execution plan', 'conviction and communication', and 'innovation tendency' except 'execution', 'the difference between pre- and post-scores of male student and female student' on first year high school students. Secondly, in satisfaction conducted after classes of AI education program based on big data, the average of 'Satisfaction', 'Interest', 'Participation', 'Persistence' were 3.56 to 3.92, and the overall average was 3.78. Therefore, it was investigated that there was a lesson effect of the AI education program based on big data developed in this research.

Cost-Based Directed Scheduling : Part II, An Inter-Job Cost Propagation Algorithm (비용기반 스케줄링 : Part II, 작업간 비용 전파 알고리즘)

  • Suh, Min-Soo;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.117-129
    • /
    • 2008
  • The cost-based scheduling work has been done in both the Operations Research (OR) and Artificial Intelligence (AI) literature. To deal with more realistic problems, AI-based heuristic scheduling approach with non-regular performance measures has been studied. However, there has been little research effort to develop a full inter-job cost propagation algorithm (CPA) for different jobs having multiple downstream and upstream activities. Without such a CPA, decision-making in scheduling heuristics relies upon local, incomplete cost information, resulting in poor schedule performance from the overall cost minimizing objective. For such a purpose, we need two types of CPAs : intra-job CPA and inter-job CPA. Whenever there is a change in cost information of an activity in a job in the process of scheduling, the intra-job CPA updates cost curves of other activities connected through temporal constraints within the same job. The inter-job CPA extends cost propagation into other jobs connected through precedence relationships. By utilizing the cost information provided by CPAs, we propose cost-based scheduling heuristics that attempt to minimize the total schedule cost. This paper develops inter-job CPAs that create and update cost curves of each activity in each search state, and propagate cost information throughout a whole network of temporal constraints. Also we propose various cost-based scheduling heuristics that attempt to minimize the total schedule cost by utilizing the cost propagation algorithm.

  • PDF

A Study on Aspects of Vital Capitalism Represented on Film Contents (영상 콘텐츠에 나타난 생명자본주의적 관점에 관한 연구)

  • Kang, Byoung-Ho
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.117-130
    • /
    • 2019
  • After Marx, the issues regarding human labour have been the alienation towards production means and the distributive justice. Fourth industrial revolution and development of AI(Artificial Intelligence) opened the possibility of a independent production and economy system absolutely excluding against human nature and labour. Using robots and AI will deepen demarcation between living things and one not having life, separating the intelligence from the consciousness. At present, so called pre-stage of post human, seeking interests for life, new social relationship and new community will be increased as well. We can understand that interests for small community, self-sufficiency, dailiness, food and body in this context is increasing too. Representative trend towards this cultural phenomena is called as the 'Kinfolk culture.' Work-life balance, 'Aucalme', 'Hygge', 'So-Hwak-Haeng'(a small but reliable happiness) are the similar culture trends as. Vital capitalism, presented by O-Yong Lee, seeks focusing onto living things principles, e.g. 'topophilia', 'neophilia', and 'biophilia' as the dynamics looking for the history substructure, not class struggle and conflicts. He also argues the 'Vital Capitalism' be regarded as a new methodology to anticipate a social system after post human era. G. Deleuze said "arts is another expression method for existential philosophy. It gives a vitality onto philosophy and gives a role to letting abstract concept into definite image." We can find a lot cases arts' imagination overcomes critical point of scientific prediction power in the future prediction. This paper reviews ideas and issues of 'vital capitalism' in detail and explorers imaginating initial ideas of vital capitalism in the film 'Little Forest.'

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

A case study of elementary school mathematics-integrated classes based on AI Big Ideas for fostering AI thinking (인공지능 사고 함양을 위한 인공지능 빅 아이디어 기반 초등학교 수학 융합 수업 사례연구)

  • Chohee Kim;Hyewon Chang
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.255-272
    • /
    • 2024
  • This study aims to design mathematics-integrated classes that cultivate artificial intelligence (AI) thinking and to analyze students' AI thinking within these classes. To do this, four classes were designed through the integration of the AI4K12 Initiative's AI Big Ideas with the 2015 revised elementary mathematics curriculum. Implementation of three classes took place with 5th and 6th grade elementary school students. Leveraging the computational thinking taxonomy and the AI thinking components, a comprehensive framework for analyzing of AI thinking was established. Using this framework, analysis of students' AI thinking during these classes was conducted based on classroom discourse and supplementary worksheets. The results of the analysis were peer-reviewed by two researchers. The research findings affirm the potential of mathematics-integrated classes in nurturing students' AI thinking and underscore the viability of AI education for elementary school students. The classes, based on AI Big Ideas, facilitated elementary students' understanding of AI concepts and principles, enhanced their grasp of mathematical content elements, and reinforced mathematical process aspects. Furthermore, through activities that maintain structural consistency with previous problem-solving methods while applying them to new problems, the potential for the transfer of AI thinking was evidenced.

A Study on the Methodology of Early Diagnosis of Dementia Based on AI (Artificial Intelligence) (인공지능(AI) 기반 치매 조기진단 방법론에 관한 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.37-49
    • /
    • 2021
  • The number of dementia patients in Korea is estimated to be over 800,000, and the severity of dementia is becoming a social problem. However, no treatment or drug has yet been developed to cure dementia worldwide. The number of dementia patients is expected to increase further due to the rapid aging of the population. Currently, early detection of dementia and delaying the course of dementia symptoms is the best alternative. This study presented a methodology for early diagnosis of dementia by measuring and analyzing amyloid plaques. This vital protein can most clearly and early diagnose dementia in the retina through AI-based image analysis. We performed binary classification and multi-classification learning based on CNN on retina data. We also developed a deep learning algorithm that can diagnose dementia early based on pre-processed retinal data. Accuracy and recall of the deep learning model were verified, and as a result of the verification, and derived results that satisfy both recall and accuracy. In the future, we plan to continue the study based on clinical data of actual dementia patients, and the results of this study are expected to solve the dementia problem.

Development of AI-based Real Time Agent Advisor System on Call Center - Focused on N Bank Call Center (AI기반 콜센터 실시간 상담 도우미 시스템 개발 - N은행 콜센터 사례를 중심으로)

  • Ryu, Ki-Dong;Park, Jong-Pil;Kim, Young-min;Lee, Dong-Hoon;Kim, Woo-Je
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.750-762
    • /
    • 2019
  • The importance of the call center as a contact point for the enterprise is growing. However, call centers have difficulty with their operating agents due to the agents' lack of knowledge and owing to frequent agent turnover due to downturns in the business, which causes deterioration in the quality of customer service. Therefore, through an N-bank call center case study, we developed a system to reduce the burden of keeping up business knowledge and to improve customer service quality. It is a "real-time agent advisor" system that provides agents with answers to customer questions in real time by combining AI technology for speech recognition, natural language processing, and questions & answers for existing call center information systems, such as a private branch exchange (PBX) and computer telephony integration (CTI). As a result of the case study, we confirmed that the speech recognition system for real-time call analysis and the corpus construction method improves the natural speech processing performance of the query response system. Especially with name entity recognition (NER), the accuracy of the corpus learning improved by 31%. Also, after applying the agent advisor system, the positive feedback rate of agents about the answers from the agent advisor was 93.1%, which proved the system is helpful to the agents.