• Title/Summary/Keyword: AI & IoT

Search Result 362, Processing Time 0.026 seconds

Trends in Utilizing Satellite Navigation Systems for AI and IoT (AI 및 IoT에 대한 위성항법시스템 활용 동향)

  • Heui-Seon Park;Jung-Min Joo;Suk-Seung Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.761-768
    • /
    • 2023
  • In the 4th Industrial Revolution, AI(Artificial Intelligence) and IoT(Internet of Things) technologies are being applied to across various fields, with particularly prominence in asset management, disaster management, and meteorological observation. In these fields, it is necessary to accurately determine the real-time and precise tracking of the object's location and status, and to collect various data even in situations that are difficult to detect with existing sensors. In order to address these demands, the use of GNSS(Global Navigation Satellite System) is essential, and this technology enables the efficient management of assets, disaster prevent and response, and accurate weather forecasting. In this paper, we provide the investigated results for the latest trends in the application of GNSS in the fields of asset management, disaster management, and weather observation, among various fields incorporating AI and IoT and analyze them.

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

스마트 홈 IoT 포렌식 기술 동향

  • Kim, Minju;Shon, Taeshik
    • Review of KIISC
    • /
    • v.31 no.6
    • /
    • pp.31-35
    • /
    • 2021
  • 다양한 스마트 홈 IoT가 개발됨에 따라 가정 내에서 IoT를 활용한 서비스가 확장되고 있다. 스마트 홈 IoT와 IoT가 등록된 스마트 폰은 서비스 제공을 위해 클라우드 서버와 통신을 수행한다. 클라우드 서버와 통신 과정에서 스마트 홈 IoT와 스마트 폰, 클라우드 서버에는 사용자에 대한 다양한 정보가 저장될 가능성이 있다. 사용자에 대한 다양한 정보가 클라우드 서버로 전송되는 것은 개인정보 문제를 야기할 수 있지만, 포렌식 관점에서는 범죄를 해결하는 데 증거로 사용될 수 있다. 따라서 본 논문에서는 클라우드 서버와 통신을 수행하는 클라우드 기반의 스마트 홈 IoT를 대상으로 데이터를 수집하는 기법을 알아보고 데이터 수집 기법이 적용된 기존의 스마트 홈 IoT 연구를 스마트 홈 IoT 기기 별로 나누어 분석한다.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

A Study on the Feasibility of IoT and AI-based elderly care system application

  • KANG, Minsoo;KIM, Baek Seob;SEO, Jin Won;KIM, Kyu Ho
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.15-21
    • /
    • 2021
  • This paper conducted a feasibility study by applying an Internet of Things and Artificial intelligence-based management system for the elderly living alone in an aging society. The number of single-person families over the age of 50 is expected to increase, and problems such as health, safety, and loneliness may occur due to aging. Therefore, by establishing an IoT-based care system for the elderly living alone, a stable service was developed through securing a rapid response system for the elderly living alone and automatically reporting 119. The participants of the demonstration test were subjects under the jurisdiction of the "Seongnam Senior Complex," and the data collection rate between the IoT sensor and the emergency safety gateway was high. During the demonstration period, as a result of evaluating the satisfaction of the IoT-based care system for the elderly living alone, 90 points were achieved. We are currently in the COVID-19 situation. Therefore, the number of elderly living alone is continuously increasing, and the number of people who cannot benefit from care services will continue to occur. Also, even if the COVID-19 situation is over, the epidemic will happen again. So the care system is essential. The elderly care system developed in this way will provide safety management services based on artificial intelligence-based activity pattern analysis, improving the quality of in-house safety services.

A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces (건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

Energy-Aware Data-Preprocessing Scheme for Efficient Audio Deep Learning in Solar-Powered IoT Edge Computing Environments (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 에너지 적응형 데이터 전처리 기법)

  • Yeontae Yoo;Dong Kun Noh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.159-164
    • /
    • 2023
  • Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.

IoT Based Distributed Intelligence Technology for Hyper-Connected Space (IoT기반 초연결 공간 분산지능 기술)

  • Park, J.H.;Son, Y.S.;Park, D.H.;Cho, J.M.;Bae, M.N.;Han, M.K.;Lee, H.K.;Choi, J.C.;Kim, H.;Hwang, S.K.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • IoT is used not only as a technical terminology but also as a paradigm representation. As the number of IoT devices spread tremendously throughout the world, they are able to be located anywhere,recognize their environment, and achieve adaptable reactions. All market investigation agencies expect the number of IoT devices to reach tens to hundreds of billions in number. They also expect various technical problems owing to the huge number of connected things and data that will emerge during the AI era. The decentralization of centralized computing for AI is the one of the technical solutions to such problems, and the computing roles for AI will be soon distributed into the things, which can be located anywhere. In this article, the traditional distributed intelligence and its current research activities are introduced, and the next distributed intelligence target for the IoT 2.0 era is briefly touched upon using the keyword Socio-Things.

Trends in Utilization of GNSS for E-Healthcare and AI & IoT Field (E-Healthcare와 AI & IoT 분야의 위성항법시스템 최신 활용 동향)

  • Tae-yun Kim;Heui-Seon Park;Jongwon Lim;Suk-seung Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • One of the core keywords in the fourth industrial revolution is convergence, and the convergence of the production, distribution, and consumption processes of services is particularly important. The convergence of user services is underway in various industrial fields including mobile communications, healthcare, mobility, artificial intelligence, etc. In order to offer these converged services efficiently, it is necessary to provide accurate user-centric location information, which can be obtained by employing the global navigation satellite system (GNSS). In addition, as we have entered the post-COVID era, the demand for various fields such as a healthcare, customized tourism services, and aviation services based on accurate location information is exploding. In this paper, we present the results of a case study on the current research trends of GNSS used in telemedicine services and AI & IoT fields, and also analyze these results.

A Study on Wellbeing Support System for the Elderly using AI (고령자를 위한 AI 기반의 Wellbeing 지원 시스템의 연구)

  • Cho, Myeon-Gyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.16-24
    • /
    • 2021
  • This paper introduces a smart aging service that helps the elderly lead a happy old age by actively utilizing IoT and AI technologies for the elderly who are increasing rapidly as they enter the aging society. In particular, we propose a future-oriented, age-friendly well-being support system that breaks away from the existing welfare concept to solve the aging problem but leads to a paradigm shift toward building a vibrant aging society by protecting from emergency and satisfying emotions. By introducing IoT and AI, it judges the life situation and emotional state from the living information of the elderly can respond to emergencies and suggest meetings as a change of mood and give an emotional comfort. Since the proposed system uses artificial intelligence techniques to determine the degree of depression when inputting information such as pulse-rate, dangerous word usage, and external communication, I think it showed the feasibility of the new concept of wellbeing support system that is totally different from conventional wellbeing concept of health-care.