• Title/Summary/Keyword: AHRS (Attitude & Heading Reference System)

Search Result 41, Processing Time 0.026 seconds

3-Dimensional Attitude Estimation using Low Cost Inertial Sensors and a Magnetic Compass (저가 관성센서와 마그네틱 컴퍼스를 이용한 3차원 자세추정)

  • Park Sang-Kyeong;Kang Hee-Jun;Suh Young-Soo;Kim Han-Sil;Son Young-Duk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1429-1432
    • /
    • 2005
  • This work is towards the development of a low-cost, small-sized inertial navigation system(INS) which consists of 3 accelerometers, 3 semiconductor gyros and a magnetic compass sensor. This paper explains in detail the structure of the developed system and proposes a 3 dimensional attitude estimation algorithm with Indirect Kalman Filter. The experiments are performed with the developed system attached to a 6 DOF robot for showing the effectiveness of the algorithm.

  • PDF

Paddling Posture Correction System Using IMU Sensors

  • Kim, Kyungjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.86-92
    • /
    • 2018
  • In recent times, motion capture technology using inertial measurement unit (IMU) sensors has been actively used in sports. In this study, we developed a canoe paddle, installed with an IMU and a water level sensor, as a system tool for training and calibration purposes in water sports. The hardware was fabricated to control an attitude heading reference system (AHRS) module, a water level sensor, a communication module, and a wireless charging circuit. We also developed an application program for the mobile device that processes paddling motion data from the paddling operation and also visualizes it. An AHRS module with acceleration, gyro, and geomagnetic sensors each having three axes, and a resistive water level sensor that senses the immersion depth in the water of the paddle represented the paddle motion. The motion data transmitted from the paddle device is internally decoded and classified by the application program in the mobile device to perform visualization and to operate functions of the mobile training/correction system. To conclude, we tried to provide mobile knowledge service through paddle sport data using this technique. The developed system works reasonably well to be used as a basic training and posture correction tool for paddle sports; the transmission delay time of the sensor system is measured within 90 ms, and it shows that there is no complication in its practical usage.

Implementation of Muscular Sense into both Color and Sound Conversion System based on Wearable Device (웨어러블 디바이스 기반 근감각-색·음 변환 시스템의 구현)

  • Bae, Myungjin;Kim, Sungill
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.642-649
    • /
    • 2016
  • This paper presents a method for conversion of muscular sense into both visual and auditory senses based on synesthetic perception. Muscular sense can be defined by rotation angles, direction changes and motion degrees of human body. Synesthetic interconversion can be made by learning, so that it can be possible to create intentional synesthetic phenomena. In this paper, the muscular sense was converted into both color and sound signals which comprise the great majority of synesthetic phenomena. The measurement of muscular sense was performed by using the AHRS(attitude heading reference system). Roll, yaw and pitch signals of the AHRS were converted into three basic elements of color as well as sound, respectively. The proposed method was finally applied to a wearable device, Samsung gear S, successfully.

무인항공기의 각속도 기반 자동비행제어시스템 개발

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Gi;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • This paper describes development of automatic flight control system for an unmanned target drone. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed. The performance of automatic flight control system is verified by flight test.

  • PDF

Development of the External Instrumentation System of a Fighter Aircraft for Flight Test (비행시험을 위한 전투기 외장형 계측시스템 개발)

  • Yeom, Hyeong-Seop;Oh, Jong-Hoon;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.907-913
    • /
    • 2010
  • In this paper, we have described a development of the external instrumentation system of a fighter aircraft for flight test. The external instrumentation system consists of the instrumentation pod and the image pod. The instrumentation pod measures a flight data(attitude, velocity, altitude, etc) of the fighter aircraft by using GPS/AHRS sensor. The image pod takes high-speed images for the separation trajectory of a smart bomb with 2 high-speed cameras and video signal for it with one general camera. We have verified the performance of the external instrumentation system through the ground test, the environment test and the flight test.

A Study on Motion and Position Recognition Considering VR Environments (VR 환경을 고려한 동작 및 위치 인식에 관한 연구)

  • Oh, Am-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2365-2370
    • /
    • 2017
  • In this paper, we propose a motion and position recognition technique considering an experiential VR environment. Motion recognition attaches a plurality of AHRS devices to a body part and defines a coordinate system based on this. Based on the 9 axis motion information measured from each AHRS device, the user's motion is recognized and the motion angle is corrected by extracting the joint angle between the body segments. The location recognition extracts the walking information from the inertial sensor of the AHRS device, recognizes the relative position, and corrects the cumulative error using the BLE fingerprint. To realize the proposed motion and position recognition technique, AHRS-based position recognition and joint angle extraction test were performed. The average error of the position recognition test was 0.25m and the average error of the joint angle extraction test was $3.2^{\circ}$.

Bias Estimation of Magnetic Field Measurement by AHRS Using UKF (UKF를 사용한 AHRS의 자기장 측정 편차 추정)

  • Ko, Nak Yong;Song, Gyeongsub;Jeong, Seokki;Lee, Jong-Moo;Choi, Hyun-Taek;Moon, Yong Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.177-182
    • /
    • 2017
  • This paper describes an unscented Kalman filter approach to estimate the bias in magnetic field measurements. A microelectromechanical systems attitude heading reference system (MEMS AHRS) was used to measure the magnetic field, together with the acceleration and angular rate. A magnetic field is usually used for yaw detection, while the acceleration serves to detect the roll and pitch. Magnetic field measurements are vulnerable to distortion due to hard-iron effect and soft-iron effect. The bias in the measurement accounts for the hard-iron effect, and this paper focuses on an approach to estimate this bias. The proposed method is compared with other methods through experiments that implement the navigation of an underwater robot using an AHRS and Doppler velocity log. The results verify that the compensation of the bias by the proposed method improves the navigation performance more than or comparable to the compensation by other methods.

Implementation of Motion Analysis System based on Inertial Measurement Units for Rehabilitation Purposes (재활훈련을 위한 관성센서 기반 동작 분석 시스템 구현)

  • Kang, S.I.;Cho, J.S.;Lim, D.H.;Lee, J.S.;Kim, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.47-54
    • /
    • 2013
  • In this paper, we present an inertial sensor-based motion capturing system to measure and analyze whole body movements. This system implements a wireless AHRS(attitude heading reference system) we developed using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. We performed 3D motion capture using the quaternion data calculated. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE of 2.56 degree. The results suggest that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limbs or gait analysis during the post-stroke recovery process.

  • PDF

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Development of a Hardware-In-Loop (HIL) Simulator for Spacecraft Attitude Control Using Momentum Wheels

  • Kim, Do-Hee;Park, Sang-Young;Kim, Jong-Woo;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.347-360
    • /
    • 2008
  • In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of space craft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System). The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.