• Title/Summary/Keyword: AFT model

Search Result 54, Processing Time 0.027 seconds

Study of the Effect of Crankshaft Model in Shaft Alignment Analysis (추진축계 정렬해석에서 엔진내부 축 모델의 영향에 관한 연구)

  • Kim Kwang Seok;Yeun Jung Hum;Kang Joong Kyoo;Heo Joo Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.206-210
    • /
    • 2005
  • As design trends has changed to have flexible aft hull structure, increased power output and stiffer shafting system, owners and classification societies have more concerned about shaft alignment. In the shaft alignment analysis, there are many uncertainties which are related in propeller generated force, bearing stiffness, crank shaft model and etc. in this study, it is focused on the effect of crankshaft model by comparing between equivalent model and actual crankshaft model.

  • PDF

PREDICTION OF AERODYNAMIC HEATING ON A SUPERSONIC MISSILE (초음속 유도탄 공력가열 예측)

  • Sun, Chul;Ahn, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.134-137
    • /
    • 2007
  • Aero-Heating phenomenon is one of the severe problems occurring in high speed missile flight. in the high speed flight, not only stagnation point but also aft body parts encounter high temperature related structural problems. But the phenomenon is not easy to predict accurately because unsteady calculation according to a flight trajectory is needed, and takes much time. In this Paper, a fast and precise scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile.

  • PDF

A Study on the Ride Improvement of an Escalator Using Flexible Body Dynamics Model (유연체 동력학모델을 이용한 에스컬레이터의 승차감 개선에 관한 연구)

  • 박찬종;권이석;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.135-142
    • /
    • 2000
  • In this paper, 3-dimensional numerical model of an escalator is developed to study the vibration characteristics. This proposed model is able to consider the elastic deformation of the frame during transient dynamic analysis. Deformation modes which are used to calculate the elastic deformation are selected from the FE model analysis. Because low frequency vibration is very important to the ride quality of fore/aft direction, low frequency deformation modes of the frame below 20Hz are considered. To show validity of this dynamics model, longitudinal acceleration of a step is compared with test data in frequency domain. Then robust design technique is applied to determine important design factors and improve ride quality with small number of experiments.

  • PDF

Development of FAA AC120-40B Level D Flight Dynamics Model for T-50 Full Mission Trainer (FAA AC120-40B Level D급 T-50 전술훈련 시뮬레이터)

  • Jeon, Dae-Keun;Lee, Se-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2006
  • FAA AC120-40B Level D flight dynamics model for T-50 Full Mission Trainer was successfully developed. Since AC120-40B Level D requires the quantitative validation tests for simulation model compared with flight test data, T-50 flight test data for each validation test item was gathered, and also automatic test environments which include AFT (Automatic Fidelity Tester) and STA (Simulation Test Analyzer) were developed. The final test results after the iterative test-tuning processes were all within the tolerances specified in AC120-40B Level D. Qualification Test Guide, QTG contains the detail test processes and results.

  • PDF

Acoustic Coupling Between Passenger and Luggage Compartments Through Loudspeaker Holes Using Indirect BEM (스피커 구멍을 통한 차실과 트렁크 공간과의 음향 연성에 대한 간접경계요소해석)

  • 정지훈;이정권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-75
    • /
    • 1997
  • Sound transmission from the luggage comparment into the car cabin is important in the viewpoint if exhaust and road noises of passenger cars. In this paper, acoustic modal coupling between passenger and luggage compartments through loudspeaker holes at parcel shelf is dealt with for a sedan type passenger car with rigid rear seat. For these purposes, a half-scaled model car is tested and computed by the indirect BEM. Predicted acoustic transfer functions are compared with experimental ones and they agree reasonably well. It is found that the fore-aft resonance frequencies of the passenger cavity in the absence of coupling holes are tend to shift to higher frequencies when the luggage compartment is coupled to the passenger cavity.

  • PDF

An experimental investigation of interceptors for a high speed hull

  • Avci, Ahmet Gultekin;Barlas, Baris
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.256-273
    • /
    • 2019
  • Nowadays interceptors have been widely used in a vast range of high-speed crafts. In this study, the results of interceptor adeptness experiments made in Istanbul Technical University's Towing Tank are unveiled. The model was tested through three transverse locations of interceptors with six different deployment depths. For three locations, the interceptor was positioned transverse on the aft; close to chine, in the middle and close to the keel. The fourth interceptor was a full length of 13.00% LWL. The results show a significant drag reduction in benefits of 1.50%-11.30% for Fn 0.58-1.19 and the trim reduction was observed in between 1.60 and $4.70^{\circ}$. Besides, one of the most significant conclusions indicates that the effect of the interceptor decreases from keel to chine for the same blade deployment heights so the blades should be controlled separately at least in three parts from keel to chine area, if operable.

Analysis of Effectiveness of Tandem Oil Fences (이중유벽의 유효성에 관한 해석)

  • Han Dong Gi;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • To assess the oil-containment effectiveness of tandem oil fences placed in currents, the movement of oil droplets in the fore and aft region of the fences is investigated by experimental and numerical methods. The effect of the flexibility of the fence skirt of single fence on the fence effectiveness is also investigated. Laboratory experiment is conducted to trace the path of a spherical solid particle of equivalent density to an oil droplet which was released in a uniform stream ahead of a model oil fence. Depending upon the releasing position and the flow condition there, it was observed that the particle floated up to the free surface, collided with the fence, or escaped below the fence. By analyzing the droplet trajectories, a numerical method is developed to predict the region ahead of the fore fence where an oil droplet initiating its motion eventually escapes beneath the fence. The effect of the relative sizes of the drafts of the fore and aft fences, the fence separation, and the bottom depth of the sea bed on the effectiveness of tandem fences is investigated using the numerically obtained trajectories of oil droplets.

  • PDF

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

Activating transcription factor 4 aggravates angiotensin II-induced cell dysfunction in human vascular aortic smooth muscle cells via transcriptionally activating fibroblast growth factor 21

  • Tao, Ke;Li, Ming;Gu, Xuefeng;Wang, Ming;Qian, Tianwei;Hu, Lijun;Li, Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.347-355
    • /
    • 2022
  • Abdominal aortic aneurysm (AAA) is a life-threatening disorder worldwide. Fibroblast growth factor 21 (FGF21) was shown to display a high level in the plasma of patients with AAA; however, its detailed functions underlying AAA pathogenesis are unclear. An in vitro AAA model was established in human aortic vascular smooth muscle cells (HASMCs) by angiotensin II (Ang-II) stimulation. Cell counting kit-8, wound healing, and Transwell assays were utilized for measuring cell proliferation and migration. RT-qPCR was used for detecting mRNA expression of FGF21 and activating transcription factor 4 (ATF4). Western blotting was utilized for assessing protein levels of FGF21, ATF4, and markers for the contractile phenotype of HASMCs. ChIP and luciferase reporter assays were implemented for identifying the binding relation between AFT4 and FGF21 promoters. FGF21 and ATF4 were both upregulated in Ang-II-treated HASMCs. Knocking down FGF21 attenuated Ang-II-induced proliferation, migration, and phenotype switch of HASMCs. ATF4 activated FGF21 transcription by binding to its promoter. FGF21 overexpression reversed AFT4 silencing-mediated inhibition of cell proliferation, migration, and phenotype switch. ATF4 transcriptionally upregulates FGF21 to promote the proliferation, migration, and phenotype switch of Ang-II-treated HASMCs.

A Study on Container Terminal Layout and the Productivity of Container Crane During Ship Turnaround Time (컨테이너 터미널 배치 형태와 본선작업 생산성에 대한 연구)

  • Shin, Sung-Ho;Kim, Yeonkook J.
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • In smart ports and port automation, the number of vertically deployed container terminals is growing. The purpose of this study is to analyze the productivity of horizontally arranged and vertically arranged container terminals by comparing the main ship operation time, and to recommend future strategies for increasing the operational efficiency of vertically configured container terminals. To achieve our goal, we chose two terminals representating each type, and collected berth allocation status data from 2018 to 2022. Then we analyzed the data using the Accelerated Failure Time (AFT) model, a parametric survival analysis technique. Under the assumption that the working circumstances of the C/C (Container Crane) are the same, we find that the productivity of on-board work of the vertically placed container terminal is higher than that of the horizontally placed container terminal. Our result also shows that the productivity is reduced during the COVID-19 period and the European ships show lower onboard work time. On the basis of these findings, we propose strategies to improve the productivity of vertical container terminals.