• Title/Summary/Keyword: AFRP sheet

Search Result 8, Processing Time 0.02 seconds

Performance of GFRP, CFRP and AFRP Sheet Reinforced Concrete under Impact Loads (GFRP 및 CFRP, AFRP sheet로 보강한 콘크리트의 충격 저항 성능)

  • Min, Kyung-Hwan;Lee, Seul-Kee;Cho, Seong-Hun;Yoon, Young-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • 본 연구에서는 정하중 및 충격하중 하에서 FRP(fiber reinforced polymer) sheet의 보강 성능을 평가하기 위해 섬유와 레진의 종류, sheet 종류, 보강 방법에 따른 휨 실험을 실시하였다. 이를 위해 GFRP와 CFRP, AFRP sheets로 보강된 $100{\times}100{\times}400mm$ 각주형 콘크리트 공시체의 하면 보강, 중앙 U형 스트립, 그라고 이 둘을 동시에 보강한 시험체를 제작하였고, 정하중 휨 실험과 낙하식 충격하중 실험을 실시하였다. 정하중 실험에서 중앙부 U형 스트립으로 보강한 시험체는 섬유의 방향과 균열의 진전 방향이 일치하여 보강효과가 거의 없었지만 CFRP와 AFRP로 하면 및 이중 보강한 시험체는 높은 휨성능을 보였다. 반면 충격하중 실험에서는 중앙부 U형 스트립 보강이 다소 성능을 향상 시켰고, 하면 및 이중 보강한 시험체는 큰 변형과 높은 에너지 소산 능력을 보였다.

  • PDF

Experimental Investigation of The Lateral Retrofitting Effect of FRP Sheet and Buckling-restrained Braces for Beam-Column Joints (FRP Sheet와 비좌굴 가새를 적용한 보-기둥 접합부의 횡방향 보강효과에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • The strengthening effect of CFRP sheet and AFRP sheet with buckling-restrained brace for Beam-Column joints under constant axial and cyclic lateral loading is evaluated experimentally in this paper. Six test specimens were constructed. The main test parameters included the FRP Sheet and Buckling-restrained braces. The results of the tests were analyzed by focusing on their mode of failure, maximum load, ductility indexes, and energy dissipation capacity. Test results indicated that CFRP Sheet with the buckling-restrained brace system significantly increased the strength and stiffness of the specimen and that it was the most adequate retrofitting method.

The Fatigue Behavior and Delamination Properties in Fiber Reinforced Aramid Laminates -Case (I) : AFRP/Al Laminates-

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.343-349
    • /
    • 2003
  • The fuselage-wing intersection suffers from the cyclic bending moment of variable amplitude. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in AFRP/Al laminate of fuselage-wing was investigated in this study. The cyclic bending moment fatigue test in AFRP/Al laminate was performed with five levels of bending moment. The shape and size of the delamination Lone formed along the fatigue crack between aluminum sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging behavior and the delamination zone were studied. As results, fiber failures were not observed in the delamination zone in this study, the fiber bridging modification factor increases and the fatigue crack growth rate decrease and the shape of delamination zone is semi-elliptic with the contour decreasing non-linearly toward the crack tip.

The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment (반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

Shear Strengthening Effect of RC Beams with FRP Sheets with respect to Shear Reinforcement Ration (전단보강비에 따른 FRP 쉬트의 전단보강성능)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.68-71
    • /
    • 2004
  • In the shear strengthening with FRP sheets, beams are wrapped around the webs and tension face of critical shear span by fiber sheets. The shear strength of RC beam strengthened with FRP sheets must be calculated based on the effective strain that can be developed in the FRP sheets at ultimate stage because the final failure modes of beams are governed by premature debonding of FRP sheet due to the limitation of bonded length by beam depth. An experimental study is carried out to evaluate the shear strengthening effect of AFRP or GFRP sheets with respect to shear reinforcement ratio of rebar. From the test results, it was found that the additional shear strength provided by GFRP or AFRP can be estimated by $p_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet $4,000m{\mu}$ proposed by ACI 440 committee.

  • PDF

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened by AFRP Sheet (아라미드섬유쉬트로 휨 보강된 RC보의 부착파괴 방지에 관한 실험적 연구)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.144-152
    • /
    • 2007
  • This study investigated the failure mechanism of RC beams strengthened with AFRP sheets. Total 5 half-scale RC beams were constructed and tested to estimate the effectiveness of various methods to prevent the debonding failure of AFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings does not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear-keys reached the ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal AFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In case of shear-keys, it was sufficient to eliminate debonding and the beams failed by AFRP sheets rupture due to the sufficient bond mechanism.

An Experimental Study to Prevent Debdonding Failure of RC Beams Strengthened by Aramid Fiber Sheets (아라미드섬유쉬트로 휨 보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.84-87
    • /
    • 2004
  • Nominal flexural strength of RC members strengthened with FRP sheets is generally based on the tensile strength of composite materials obtained from coupon tests. This method is based on the assumption that bond failure does not occur until the FRP sheet reaches its rupture strength. According to the previous researches, however, bond failure often occurs before the FRP sheet reaches its rupture strength. Some attempts were made to control debonding failure by increasing the bonded length of sheet or wrapping the section around their side of the member(U-wrap). In this study, the flexural failure mechanism of RC beams strengthened with AFRP sheets with different bond lengths is investigated. Their strengthening details to prevent the premature debonding failure are also suggested and its effectiveness is verified.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints Retrofitting with Fiber Reinforced Polymer Sheets and Embedded CFRP Rods (섬유시트와 매입형 CFRP Rod를 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Ha, Young-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (CFRP sheet, AFRP sheet, embedded CFRP rod) in existing reinforced concrete structure. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens LBCJ-CRUS, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.54 times and its energy dissipation capacity by 2.36 times in comparison with standard specimen LBCJ for a displacement ductility of 4 and 7. And Specimens LBCJ-CS, LBCJ-AF series were increased its energy dissipation capacity each by 2.04~2.34, 1.63~3.02 times in comparison with standard specimen LBCJ for a displacement ductility of 7.