• Title/Summary/Keyword: AEBSF

Search Result 2, Processing Time 0.016 seconds

Effects of AEBSF on the Delay of Spontaneous Apoptosis and the Trans-Differentiation of Human Neutrophils into Dendritic Cells (Serine pretease 억제제인 4-(2-aminoethyl) benzensulfonylfluoride (AEBSF)에 의한 호중구의 자연 세포사멸의 지연과 수지상 세포로의 전이분화 연구)

  • Park, Hae-Young;Kwak, Jong-Young
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.948-955
    • /
    • 2007
  • Neutrophils play a key role as a first line of defense and are known to acquire the characteristics of dendritic cells (DCs) under the appropriate conditions. The spontaneous apoptosis of neutrophils was delayed by treatment with 4-(2-aminoethyl) benzensulfonylfluoride (AEBSF), a serine protease inhibitor. AEBSF inhibited both caspase-3 and serine protease activities, whereas ZVAD-fmk, a pancaspase inhibitor, inhibited only caspase-3 activity. The life span of neutrophils was prolonged up to 5 days by AEBSF in the presence or absence of granulocyte macrophage colony stimulating factor(CM-CSF). DC surface markers, such as CD80, CD83, and MHC class ll were not expressed on neutrophils treated with AEBSF alone. CM-CSF failed to prolong the survival time of neutrophils up to3 days but increased the expression levels of DC markers on neutrophils in the presence of AEBSF. Expression levels of DC markers were the highest on neutrophils treated with CM-CSF and AEBSF for 3 days. AEBSF and CM-CSF-treated neutrophils stimulated proliferation of T cells in the presence of a superantigen, Staphylococcal enterotoxin B (SEB) but produced $interferon-{\gamma}$ ($IFN{\gamma}$) in the absence of SEB. These results suggest that the inhibition of serine protease activity prolonged the life span of human neutrophils and combined treatment of neukophils with CM-CSF and serine protease inhibitor induced differentiation of neutrophils into DC-like cells.

Purification and Characterization of Manganese-Dependent Alkaline Serine Protease from Bacillus pumilus TMS55

  • Ibrahim, Kalibulla Syed;Muniyandi, Jeyaraj;Pandian, Shunmugiah Karutha
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2011
  • The purification and characterization of a $Mn^{2+}$-dependent alkaline serine protease produced by Bacillus pumilus TMS55 were investigated. The enzyme was purified in three steps: concentrating the crude enzyme using ammonium sulfate precipitation, followed by gel filtration and cation-exchange chromatography. The purified protease had a molecular mass of approximately 35 kDa, was highly active over a broad pH range of 7.0 to 12.0, and remained stable over a pH range of 7.5 to 11.5. The optimum temperature for the enzyme activity was found to be $60^{\circ}C$. PMSF and AEBSF (1 mM) significantly inhibited the protease activity, indicating that the protease is a serine protease. $Mn^{2+}$ ions enhanced the activity and stability of the enzyme. In addition, the purified protease remained stable with oxidants ($H_2O_2$, 2%) and organic solvents (25%), such as benzene, hexane, and toluene. Therefore, these characteristics of the protease and its dehairing ability indicate its potential for a wide range of commercial applications.