• 제목/요약/키워드: AE techniques

검색결과 236건 처리시간 0.022초

Detection of electromagnetic interference shielding effect of Hanji mixed with carbon nanotubes using nuclear magnetic resonance techniques

  • Byun, Young Seok;Chae, Shin Ae;Park, Geun Yeong;Lee, Haeseong;Han, Oc Hee
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.90-97
    • /
    • 2018
  • Electromagnetic interference (EMI) shielding is an important issue in modern daily life due to the increasing prevalence of electronic devices and their compact design. This study estimated EMI-shielding effect (EMI-SE) of small ($8-14{\times}17mm$) Hanji (Korean traditional paper) doped with carbon nanotubes (CNTs) and compared to Hanji without CNT using $^2H$ (92.1 MHz) and $^{23}Na$ (158.7 MHz) nuclear magnetic resonance (NMR) peak area data obtained from 1 M NaCl in $D_2O$ samples in capillary tubes that were wrapped in the Hanji samples. The simpler method of using the variation of reflected power and tuning frequency by inserting the sample into an NMR coil was also tested at 242.9, 158.7, and 92.1 MHz. Overall, EMI shielding was relatively more effective at the higher frequencies. Our results validated that NMR methods to be useful to evaluate EMI-SE, particularly for small, flexible shielding materials, and demonstrated that EMI shielding by absorption is dominant in Hanji mixed with CNT.

Oil-Transformer에서의 UHF PD 측정 기술 연구 (Research of UHF PD measuring techniques for Oil-Transformer)

  • 이창준;강원종;강윤식;박종배;이희철;박종화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1809-1811
    • /
    • 2003
  • Oil-TR에서의 이상을 진단하기 위해서, 유중가스 분석 및 AE센서를 사용한 부분방전측정을 중심으로 많은 연구가 진행/적용되어왔다. 근래 들어서는 거의 모든 진단항목이 환선상태에서 측정하는 것으로 전이되는 추세이며, 사용자가 설비의 현재의 상태를 계속 감시하여 수명을 연장시키는데 관심의 초점이 모아지고 있다. 이에 본 논문에서는 Spiral-Type의 광대역 UHF센서를 사용하여 TR에서 발생하는 부분방전을 측정하였다. 이 방식은 TR내부에 센서를 주입하는 방식으로서, 상대적으로 감도가 우수하며, 노이즈의 영향이 적게 받는다. 코로나방전, 표면방전 및 부유물 형태의 결함에 대하여 측정한 결과를 나타내었으며, 주파수 분포에 대한 변화를 주로 관측하였다. 결과적으로, 서로 다른 결함은 서로 다른 결과를 나타내었으며, 이를 바탕으로 Oil-TR에서 발생하는 결함을 인식할 수 있는 데이터로 활용할 수 있다.

  • PDF

통계적 기법을 통한 예술작품의 친밀성에 대한 새로운 해석 연구 (A Study of New Analysis on the Intimacy about Work of Art through Statistical Techniques)

  • 서명애;이상복
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2006년도 춘계학술대회
    • /
    • pp.349-354
    • /
    • 2006
  • We tried new interpreting about the work of art in this paper. The work of art respects the intention of the artist to make it and interprets intention until now. After critics distinguish by a period, an area that they set to philosophical thought which is the timex and interpreted. We set to each one subjectivity and interpreted between artist to make the work of art and appreciator. But in this paper, we tied various criteria which appreciates the work of art. We tried so that we presented the intimacy each other newly. Otherwise we tied with the subjectivity of the Individual and are the try to be an objectification low through statistical technique. We looked into the culture and art in the introduction and explain the discussion about the work of art interpreting which the main subject. We set the category 6 area, and explain an each criteria explanation and assessment method. We tried to propose new interpreting as the intimacy to be statistical technique result of the assessment analysis.

  • PDF

Properties of Sodium Dodecyl Sulfate / Triton X-100 Mixed Micelle

  • Park, Joon-Woo;Chung, Myung-Ae;Choi, Kyung-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권5호
    • /
    • pp.437-442
    • /
    • 1989
  • The cmc's of sodium dodecyl sulfate (SDS)/Triton X-100 surfactant mixtures were determined by surface tension measurement at various surfactant compositions. The cmc values were lower than those predicted from ideal mixture. The regular solution theory was applied to calculate the interaction parameter, micellar composition, and the activity coefficients of surfactants in the mixed micelle. The interaction parameter (${\beta}$) was - 2.1. The nonideality arised largely from decreased activity of SDS in the mixed micelle. The mean aggregation numbers (${\bar{n}}$) and micropolarity of hydrocarbon region of the mixed micelles were determined by luminescence probe techniques. The total aggregation number (${\bar{n}}_{SDS}+{\bar{n}}_{TX}$) in mixed micelles showed little dependency on the composition of the micelle. The apparent dielectric constant of the hydrocarbon region of the micelle vs micellar composition plot showed positive deviation from linearity. Emission and emission quenching of excited tris(2,2'-bipyridine)ruthenium(Ⅱ) cation, $(Ru(bpy)_3^{2+})$, by methylviologen ($MV^{2+}$) were also investigated in the mixed micellar solutions. The quenching rate was lowest when the mole fraction of SDS in the surfactant mixtures (${\alpha}_{SDS}$) is about 0.25 and highest at ${\alpha}_{SDS}$ = 0.85. This was explained in terms of combined effects of binding of the cations with the micelle and mobility of the bound cations on the surface of the micelles.

Simultaneous Analysis of Four Standards of The Herbal Formula, DF-02, of Ephedra intermedia and Rheum palmatum, using by High Performance Liquid Chromatography-Ultraviolet Detector (HPLC-UVD)

  • Choi, Seong Yeon;Jeong, Birang;Jang, Hyeon Seok;Lee, Jiho;Kwon, Yong Soo;Yoon, Yoosik;Shin, Soon Shik;Yang, Heejung
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.111-114
    • /
    • 2019
  • The herbal formula, DF-02, consisting of Ephedra intermedia and Rheum palmatum are used for the treatment of the metabolic diseases such as obesity and liver fibrosis in Korean local clinics. We aimed to develop the simultaneous analytical conditions for four standards, (+)-pseudoephedrine (PSEP) and (-)-ephedrine (EP) for E. intermedia, and aloe-emodin (AE) and chrysophanol (CP) for R. palmatum using HPLC-UV techniques. The validated conditions yielded the high precision (relative standard deviation (RSD) < 3.65%) and the recoveries (94 - 106%) using the calibration curves with high linearity ($R^2$ > 0.9994). As a result, four standards of DF-02 were simultaneously determined under the developed method, which will be utilized for the quality control or evaluation of DF-02 and many herbal preparations containing E. intermedia and R. palmatum.

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications

  • Selvakumar, Kanakaraj;Kim, Ae Rhan;Prabhu, Manimuthu Ramesh;Yoo, Dong Jin
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.373-379
    • /
    • 2021
  • A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

미소파괴음을 이용한 KURT 화강암의 손상에 관한 정량적 평가 (Quantitative Damage Assessment in KURT Granite by Acoustic Emission)

  • 이경수;김진섭;최희주;이창수
    • 대한토목학회논문집
    • /
    • 제32권6C호
    • /
    • pp.305-314
    • /
    • 2012
  • 본 연구에서는 미소파괴음을 활용하여 한국 원자력 연구원 지하처분연구시설에서 채취한 화강암의 손상도를 정량적으로 평가하였다. 해석결과 균열손상기준은 균열개시, 균열손상응력은 일축압축강도의 약 48%, 72%이며 균열손상기준에 따른 암석의 손상은 시료에 가해지는 응력이 균열손상응력을 초과하면서부터 0.06에서 일축압축강도의 80%, 90%에서는 0.34, 0.60로 급격히 증가하였다. 이는 축 방향 변형계수를 활용한 손상도 결과와 유사하여 단순회귀분석 결과 두 기법의 상관관계는 0.90로 상관성은 매우 높은 것으로 나타났다. 이에 미소파괴음 에너지를 활용한 손상도 결과와 모어-쿨롱 파괴규준을 이용하여 응력수준에 따른 축 방향 변형계수, 암석의 강도, 점착력, 내부마찰각 변화를 분석한 결과 균열손상응력 이전까지는 원결과보다 각각 6%, 12%, 7%, 3% 감소하였지만 일축압축강도의 90%수준에서는 69%, 72%, 62%, 24%로 감소의 기울기는 급격히 증가하였다.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.