• Title/Summary/Keyword: AE 신호

Search Result 438, Processing Time 0.025 seconds

A study on the acoustic emission characteristics of laminated composite structures (복합재료 적층 구조물의 음향방출 특성 연구)

  • 박재성;김광수;이호성
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2003
  • This paper studied the AE(acoustic emission) characteristics of the laminated composite structures. The composite stiffened panels under the compressive loading emitted various AE signals when they buckled or changed the buckling modes. In addition, the failure initiated and propagation generated a lot of complex signals. From the continuous signal generation. we identified when the failures initiated and whether they propagated or not. The single lap joint of laminated plates under tensional load also generated AE signals when bonding region failed. The first failure occurrence and its propagation are monitored by generated AE signals. The characteristics of AE signals used in this analysis are cumulative hits, hit distribution, peak frequency of generated AE waveform and amplitude of signals. The analysis of AE signals shows that continuous increment of cumulative hits can be regarded as damage propagation and three dominant peak frequencies can correspond to typical failure modes in the laminated composites.

Fundamental Study of Degradation Diagnosis using AE Signals with Void Discharge in XLPE Insulation (XLPE 절연체의 트리 채널내 보이드방전에 의한 AE신호로 절연열화 검출 기법 연구)

  • Lee, Sang-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • In this paper, to detect and observation the void discharges pulse signal, AE signals and tree growth characteristics in case the high voltage is applied to a XLPE sample for a power cable. We also examined the partial discharge current pulse and AE signals with the increase of the applied voltage in XLPE insulation. The experimental results show that a branch-type tree grows in the presence of the voids, and a bush-type tree grows in the absence of the voids in both samples. A rate of tree growth increases abruptly in proportional to the deterioration time in the presence of the of the voids, but in the absence of the voids, a rate of tree growth decreases as time goes by and finally a breakdown occurs. The frequency band of AE signals that are generated from the partial discharges in a XLPE sample, one of solid dielectric materials, is about 1.0[MHz].

Acoustic Emission Characteristics during fracture Process of Glass Fiber/Aluminum Hybrid Laminates (유리섬유/알루미늄 혼합 적층판의 파괴과정과 음향방출 특성)

  • Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.274-286
    • /
    • 2005
  • Fracture behaviors and acoustic emission (AE) characteristics of single-edge-notched monolithic aluminum plates and glass fiber/aluminum hybrid laminate plates have been investigated under tensile loads. AE signals from monolithic aluminum could be classified into two different types: signals with low frequency band and high frequency band. High frequency signals were detected in the post stage of loading beyond displacement of 0.45mm. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macro-crack propagation and/or delamination between A1 and fiber layers. On the basis of the above AE analysis and fracture observation with optical microscopy and ultrasonic T scan, characteristic features of AE associated with fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations.

Detection of Acoustic Signal Emitted during Corrosion of 304 Stainless Steel (304 스테인레스 강의 부식 손상 중 발생하는 음향방출신호 분석)

  • Wu, Kaige;Choe, Chan-Yang;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.409-414
    • /
    • 2013
  • In this work, corrosion of 304 stainless steel was evaluated by using acoustic emission(AE) technique. AE measurement system was set for detecting acoustic signal during accelerated corrosion test of the specimen. AE signal started to be detected after the time of pitting corrosion initiation was evaluated by anodic polarization curve. Pitting corrosion damage was confirmed by optical microscopic observation of the surface morphology. AE cumulative counts and amplitude according to corrosion time could be divided into three stages. These trends were discussed in relation with changing pitting corrosion mechanism. Feasibilities of AE technique for evaluation of corrosion damage and mechanism were suggested.

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Tool Life Monitoring using AE Signal in Gear Shaping (기어가공식 AE 신호를 이용한 공구수명의 감시)

  • 최성필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.130-134
    • /
    • 1996
  • The characteristics of AE(Acoustic Emission) signal is related to cutting conditio, tool material, and tool geometry in metal cutting. The relation between AE signal and tool life was investigated experimentally. Experiment is carried out by gear shaping and SCM 420 workpiece. AE RMS voltage were increased according totool wear. It is suggested that maximum value of AE RMS voltage is an effective parameter to monitor tool life.

  • PDF

AE Signal Characteristic Analysis caused by Crack Growth (균열 진전에 따라 발생되는 AE신호 특성 분석)

  • Kim, W.C.;Kim, J.G.;Gu, D.S.;Kim, H.J.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.41-46
    • /
    • 2010
  • Acoustic emission (AE) technique is a well-known non-destructive test technique. Fatigue crack growth test was performed using SM53C to check up the AE signal occurred by crack growth, so AE system was used to detect the crack signal. Features calculated by the AE signals were analyzed to evaluate the steps divided the crack growth into three. The steps, initiation, growth and breaking, were separated by velocity of the crack growth. Time waveform and power spectrum were created by the AE signal of each one of the steps and compared. In the feature domains, it was found that AE values changed rapidly as the velocity of the crack increasing.

Frequency Distribution of Mechanical Noise Signals for Ultrasonic Wave and AE Sensor with Brush Spark of DC Motor (직류전동기 브러시 섬락에 따른 기계적 노이즈 신호의 주파수 분포)

  • 이상우;김인식;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.36-43
    • /
    • 2004
  • In this paper, the frequency spectra from respective mechanical noise signals detected using ultrasonic wave and AE(Acoustic Emission) sensor were analysed to under spark generation between brush and commutator side with arbitrarily 15$^{\circ}$ rotation for brush from the DC motor in operation. Also, the frequency spectra from respective magnetizing noise signals detected using ultrasonic wave and AE sensor were analysed to under neutral point for brush from the DC motor in normal operation. And the analyses and comparison between the mechanical noise signal and magnetizing noise signal of ultrasonic wave with brush location change from the DC motor in operation. As the experimental results, tile mechanical noise signal of ultrasonic wave under spark generation between brush and commutator side with brush location change from the DC motor in operation were increased about 2.5∼3.0 times than magnetizing noise signal of ultrasonic wave form the DC motor in normal operation. Also, the main frequency band for mechanical noise signals of AE under spark generation between brush and commutator side with brush location change from the DC motor in operation, appeared about 1.3[MHz]∼l.5[MHz] by the fast fourier transform.

Analysis of Compressive Deformation Behaviors of Aluminum Alloy Using a Split Hopkinson Pressure Bar Test with an Acoustic Emission Technique (SHPB 시험과 음향방출법을 이용한 알루미늄 합금의 압축 변형거동 분석)

  • Kim, Jong-Tak;Woo, Sung-Choong;Sakong, Jae;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • In this study, the compressive deformation behaviors of aluminum alloy under high strain rates were investigated by means of a SHPB test. An acoustic emission (AE) technique was also employed to monitor the signals detected from the deformation during the entire impact by using an AE sensor connected to the specimen with a waveguide in real time. AE signals were analyzed in terms of AE amplitude, AE energy and peak frequency. The impacted specimen surface and side area were observed after the test to identify the particular features in the AE signal corresponding to the specific types of damage mechanisms. As the strain increased, the AE amplitude and AE energy increased whereas the AE peak frequency decreased. It was elucidated that each AE signal was closely associated with the specific damage mechanism in the material.

Resonance Type Acoustic Emission Signal Analyzing Method for the failure detection of the composite materials (복합재료의 파손 감지를 위한 동조형 음향방출 신호분석 기법)

  • Lee, Chang-Hun;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.30-36
    • /
    • 2004
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on the non-destructive testing methods of the composite materials has become an important research area for improving their reliability and safety. In this paper, the AE signal analyzer with the resonance circuit to extract the specified frequency of the acoustic emission signal were designed and fabricated. The noise levels of the fabricated AE signal analyzer by the disturbance such as impact or mechanical vibration had a very small value comparable to those of the conventional AE signal analyzer. Also, the fabricated AE signal analyzer was proved to have about the same crack detection capabilities with the conventional AE signal analyzer under the static and dynamic tensile tests of the composite materials.