• Title/Summary/Keyword: ADU

Search Result 63, Processing Time 0.022 seconds

Characteristics of the Ammonium Diuranate Powders Prepared with Different Experimental Apparatus in Sol-gel Process (졸-겔 방법으로 제조된 Ammonium Diuranate 핵연료 분말의 공정장치 변수에 따른 특성)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Ueom, Sung-Ho;Cho, Moon Sung
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.398-404
    • /
    • 2012
  • This paper describes the spherical ammonium diuranate gel particles which are the intermediated material of the $UO_2$ microsphere for an VHTR(very high temperature reactor) nuclear fuel. The characteristics of the intermediate-ADU gel particles prepared by AWD(ageing, washing, and drying) and FB(fluidized-bed) apparatus were examined and compared in a sol-gel fabrication process. The electrical conductivity of washing filtrate from the FB treating and the surface area of dried-ADU gel particles were higher than those of AWD treating. Also, an internal pore volume in dried-ADU gel particles showed a more decrease in AWD treatment than FB treatment because of decomposition of PVA affected by the washing time. However, the internal microstructures of ADU gel particles were similar regardless of the process variation.

Preparation of an Intermediate and Particle Characteristics for HTGR Nuclear Fuel (고온가스로 핵연료 중간물질 제조와 분말특성)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Lee, Young-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.124-131
    • /
    • 2007
  • In this study, first the ADU gel particle, an intermediate for final $UO_2$ kernel of a HTGR nuclear fuel, was prepared from sol-gel method using the broth solution which was made by mixing of the uranyl nitrate, poly vinyl alcohol and tetra-hydrofurfuryl alcohol. The prepared dried-ADU gel particles were converted to the $UO_2\;via\;UO_3$ from thermal treatment with the 4% $H_2$ atmosphere. The sizes of the spherical liquid droplets appeared $1900{\sim}2100{\mu}m$, and the harmony between the flow rate of the broth solution and the frequency and the amplitude of a vibrating system are important factors for the spherical ADU gel particles via the mono size spherical droplets. From the XRD and FT-IR analyses, the prepared ADU gel particles were judged to be a $UO_3{\cdot}xNH_3{\cdot}yH_2O$ form, and the most important factor during the thermal treatment of the dried-ADU gel particle must be avoided a rapidly heating rate in the range of $180{\sim}400^{\circ}C$, and the heating rate should be kept below $5^{\circ}C/min$.

HTGR Nuclear Fuel Microsphere Preparation Using the Modified Sol-Gel Method (변형 Sol-Gel 방법을 이용한 고온가스로 핵연료 미세구입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.574-582
    • /
    • 2009
  • $UO_2$ microsphere particles, core material of HTGR(High Temperature Gas Reactor) nuclear fuel, were prepared using by the GSP(Gel Supported Precipitation) method which is a modified-method of the wet sol-gel process. The spherical shape of initial liquid ADU droplets from the vibration nozzle system was continuously kept till the conversion to the final $UO_2$ microsphere. But the size of a final $UO_2$ microsphere was shrunken to about 25% of an initial ADU droplet size. Also, we found that the composition of dried-ADU gel particles was constituted of the very complicated phases, coexisted the U=O, C-H, N-H, N-O, and O-H functional groups by FT-IR. The important factors for obtain the no-crack $UO_2$ microsphere during the thermal treatment processes must perfectly wash out the remained-$NH_4NO_3$ within the ADU gel particle in washing process and the selections of an appropriate heating rate at a suitable gas atmosphere, during the calcining of ADU gel particles, the reducing of $UO_3$ particles, and the sintering of $UO_2$ particles, respectively.

Properties of Compacts and Pellets Made Using Bimodal- Sized $UO_2$ Powder

  • Kim, Keon-Sik;Song, Kun-Woo;Kang, Ki-Won;Kim, Jong-Hun;Kim, Young-Min
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.608-617
    • /
    • 1999
  • The powder mixture which has a bimodal size distribution, with a large mode corresponding to AUC-UO$_2$ powder and a small one corresponding to ADU-UO$_2$ powder, was prepared, pressed into compacts, and sintered at 1680t for 4 hours in hydrogen gas. The compact density of the powder mixture increases with increasing ADU-UO$_2$content within a content of 20 wt %, since small ADU-UO$_2$ particles can fill interstices between large AUC-UO$_2$particles. The UO$_2$ pellet made using the powder mixture has a lower open porosity than that made using AUC-UO$_2$ powder alone. The mechanism for the formation of a flake-like pore is proposed, and the decrease in open porosity may be ascribed to the decrease in the number of flake-like pores.

  • PDF

A Case Study on Improving for Operating ATC/ATO System and Driving Environment Using FMECA (FMECA를 활용한 ATC/ATO 시스템 및 운전환경 개선 사례연구)

  • Kim, Hanyoung;Lee, Jinchoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.550-557
    • /
    • 2012
  • In general, FMECA is a technique for identifying failure modes and devices which could result in fatal outcomes. Also it can be used in design or in maintenance through establishing priorities. The purpose of this paper is aimed at improving the driving conditions in advance through analyzing the operation failure phenomena quantitatively with FMECA analysis on the onboard signal system equipped with ATC/ATO, and through deriving the risk factors. This paper suggests an alternative solution for improving the performance of ADU by analyzing a case with FMECA.

UO2 Spheres Produce by External Gelation Process (외부겔화공정을 이용한 이산화우라늄 구형 입자 제조)

  • Kim, Yeon-Ku;Sah, Injin;Kim, Eung Seon
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.533-541
    • /
    • 2020
  • UO2 kernels, a key component of fuel elements for high temperature gas cooled reactors, have usually been prepared by sol-gel methods. Sol-gel processes have a number of advantages, such as simple processes and facilities, and higher sphericity and density. In this study, to produce 900 ㎛-sized UO2 particles using an external gelation process, contact length extension of the NH3 gas of the broth droplets pass and the improvement of the gelation device capable of spraying 14 M-NH4OH solution are used to form 3,000 ㎛-sized liquid droplets. To produce high-sphericity and high-density UO2 particles, HMTA, which promotes the gelation reaction in the uranium broth solution, is added to diffuse ammonium ions from the outside of the gelation solution during the aging process and generate ammonium ions from the inside of the ADU gel particles. Sufficient gelation inside of ADU gel particles is achieved, and the density of the UO2 spheres that undergo the subsequent treatment is 10.78 g/㎤; the sphericity is analyzed and found to be 0.948, indicating good experimental results.

Effect of Ball-mill Treatment on Powder Characteristics, Compaction and Sintering Behaviors of ell-AUC and ex-ADU $UO_2$ Powder

  • Na, Sang-Ho;Kim, Si-Hyung;Lee, Young-Woo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2002
  • The effects of ball-milling time(0 ~4 hrs) have been investigated on the change of powder characteristics, compaction behavior (compaction pressure range : 200 ~400MPa) and sinterability (1700'c in Ha atmosphere) of two different UO$_2$ powders (ex-ADU and ex-AUC) prepared by the wet process. It is observed that, while the ex-ADU UO$_2$ was little affected, the ex-AUC UO$_2$ was largely affected by the ball-milling treatment. This may be attributed to the characteristics of particle size formed during the preparation step, i.e.., the former has a small average size of about 1.0${\mu}{\textrm}{m}$, while the latter has a relatively large average size of about 301n. It appeared that the effective size reduction by ball-milling treatment is limited to the particle size larger than l${\mu}{\textrm}{m}$, and to the extent of maximum decrease in size of about 0.5tn. In the case of ex-AUC UO$_2$, it is observed that the particle size decreased with ball-milling time and green density and sintered density of the pellets prepared from ball-milled powder increased compared with those of pellets prepared from the as-received powder under the same conditions. This may be attributed mainly to the fine particles formed during the ball-milling treatment.

A Study on the Waste Treatment from a Nuclear Fuel Powder Conversion Plant (핵연료 분말제조 공정에서 발생하는 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1164-1173
    • /
    • 1996
  • Treating methods and characteristics of waste from a nuclear fuel powder conversion plant were studied. To recovery or treat a trace uranium in liquid waste, the ammonium uranyl carbonate(AUC) filtrate must be heated for $CO_2$ expelling, essentially. Uranium content of final treated waste solution from fuel powder processes for a heavy water reactor(HWR) could be lowered to 1 ppm by the lime treatment after the ammonium di-uranate(ADU) precipitation by simple heating. Otherwise, in case of the waste from fuel powder processes for a pressurized light water reactor(PWR), it is result in 0.8 ppm as a form of uranium peroxide such as $UO_4{\cdot}2NH_4F$ compounds. Optimum condition was found at $101^{\circ}C$ by the simple heating method in case of HWR powder process waste. And in case of PWR powder process waste, optimum condition could be obtained by precipitating with adding hydrogen peroxide and adjusting at pH 9.5 with ammonia gas at $60^{\circ}C$ after heating the waste In order to expelling $CO_2$. As the characteristics of recovered uranium compounds, median particle size of ADU was increased with pH increasing in case of HWP waste. Also, in case of uranium proxide compound recovered from PWR waste, the property of $U_3O_8$ power obtained after thermal treatment in air atmosphere was similar to that of the powder prepared from AUC conversion plant.

  • PDF

LABORATORY TEST OF CCD #1 IN BOAO (보현산 천문대 1번 CCD카메라의 실험실 테스트)

  • Park, Byeong-Gon;Cheon, Mu-Yeong;Kim, Seung-Ri
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.67-78
    • /
    • 1995
  • An introduction to the first CCD camera system in Bohyunsan Optica1 Astronomy Observatory(CCD#l) is presented. The CCD camera adopts modular dewar design of IfA(Institute for Astronomy at Hawaii University) and SDSU(San Diego State University) general purpose CCD controller. The user interface is based on IfA design of easy-to-use QUI program running on the NeXT workstation. The characteristics of the CCD#l including Gain, Charge Transfer Efficiency, rms Read-Out Noise, Linearity and Dynamic range is tested and discussed. The CCD#l shows 6.4 electrons RON and gain of 3.49 electrons per ADU, and the optimization resulted in about 27 seconds readout time guaranteeing charge transfer efficiency of 0.99999 for both direction. Linearity test shows that non-linear coefficient is $6{\times}10^{-7}$ in the range of 0 to 30,000 ADU.

  • PDF

분말처리 방법에 따른 $UO_2$ 분말 및 성형체에서의 기공도 변화

  • 김시형;김한수;이정원;이영우;양명승;박현수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.650-655
    • /
    • 1995
  • AUC-$UO_2$, ADU-$UO_2$ 분말이 ball mill과 attritor mill에서 분쇄될 때, 기공도변화를 측정함으로서 분말의 특성변화와 분쇄거동을 관찰하였다. 분쇄전 ADU-$UO_2$ 분말은 0.3-7 $\mu\textrm{m}$ 범위의 기공들이 고르게 분포하였으며, ball mill에서 분쇄되어도 그 분포는 거의 변화가 없었다. 분쇄전 AUC-$UO_2$ 분말은 3-8 $\mu\textrm{m}$와 0.05-0.2 $\mu\textrm{m}$ 범위의 기공이 주로 생성되어 있는 bimodal 분포를 나타내었다. Ball mill에서 분쇄됨에 따라 3 $\mu\textrm{m}$이상의 큰 기공과 0.2 $\mu\textrm{m}$ 이하의 작은 기공이 소멸되고, 0.2-3 $\mu\textrm{m}$의 기공들이 고르게 분포하는 경향을 나타내었다. 반면에 AUC-$UO_2$가 attritor mill에서 분쇄될 경우에는 bimodal 분포는 그대로 유지하면서 3-8 $\mu\textrm{m}$의 큰 기공은 줄어들고 0.05-0.2 $\mu\textrm{m}$의 기공은 그 양이 증가하는 경향을 나타내었다. 이것은 ball mill에서는 주로 충격작용에 의해서, attritor mill에서는 전단작용에 의해서 분쇄가 진행됨으로 인한 분쇄기구의 차이인 것으로 사료된다.

  • PDF