• Title/Summary/Keyword: ADOxx

Search Result 4, Processing Time 0.016 seconds

A Process Algebra Construct Method for Reduction of States in Reachability Graph: Conjunctive and Complement Choices (도달성 도표의 상태감소를 위한 프로세스 대수 구문 방법: 이음 선택과 여 선택)

  • Choe, Yeongbok;Lee, Moonkun
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.541-552
    • /
    • 2016
  • This paper introduces the new notions of conjunctive and complement choices in process algebra, which reduce both process and system complexities significantly for distributed mobile real-time system during specification and analysis phases. The complement choice implies that two processes make cohesive choices for their synchronous partners at their own choice operations. The conjunctive choice implies choice dependency among consecutive choice operations in a process. The conjunctive choice reduces process complexity exponentially by the degree of the consecutive choice operations. The complement choice also reduces system complexity exponentially by the degree of the synchronous choice operations. Consequently, the reduction method makes the specification and analysis of the systems much easier since the complexity is reduced significantly. This notion is implemented in a process algebra, called ${\delta}$-Calculus. The efficiency and effectiveness are demonstrated with an example in a tool for the algebra, called SAVE, which is developed on ADOxx platform.

Modeling and Composition Method of Collective Behavior of Interactive Systems for Knowledge Engineering (지식공학을 위한 상호작용 시스템의 집단 행위 모델링 및 합성 방법)

  • Song, Junsup;Rahmani, Maryam;Lee, Moonkun
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1178-1193
    • /
    • 2017
  • It is very important to understand system behaviors in collective pattern for each knowledge domain. However, there are structural limitations to represent collective behaviors because of the size of system components and the complexity of their interactions, causing the state explosion problem. Further composition with other systems is mostly impractical because of exponential growth of their size and complexity. This paper presents a practical method to model the collective behaviors, based on a new concept of domain engineering: behavior ontology. Firstly, the ontology defines each collective behavior of a system from active ontology. Secondly, the behaviors are formed in a quantifiably abstract lattice, called common regular expression. Thirdly, a lattice can be composed with other lattices based on quantifiably common elements. The method can be one of the most innovative approaches in representing system behaviors in collective pattern, as well as in minimization of system states to reduce system complexity. For implementation, a prototype tool, called PRISM, has been developed on ADOxx Meta-Modelling Platform.

GTS-Visual Logic: Visual Logic and Tool for Analysis and Verification of Secure Requirements in Smart IoT Systems (GTS-VL: 스마트 IoT에서 안전 요구사항 분석과 검증을 위한 시각화 논리 언어 및 도구)

  • Lee, SungHyeon;Lee, MoonKun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.289-304
    • /
    • 2022
  • It is necessary to apply process algebra and logic in order to analyze and verify safety requirements for Smart IoT Systems due to distributivity and mobility of the systems over some predefined geo-temporal space. However the analysis and verification cannot be fully intuitive over the space due to the fact that the existing process algebra and logic are very limited to express the distributivity and the mobility. In order to overcome the limitations, the paper presents a new logic, namely for GTS-VL (Geo-Temporal Space-Visual Logic), visualization of the analysis and verification over the space. GTS-VL is the first order logic that deals with relations among the different types of blocks over the space, which is the graph that visualizes the system behaviors specified with the existing dTP-Calculus. A tool, called SAVE, was developed over the ADOxx Meta-Modeling Platform in order to demonstrate the feasibility of the approach, and the advantages and practicality of the approach was shown with the comparative analysis of PBC (Producer-Buffer-Consumer) example between the graphical analysis and verification method over the textual method with SAVE tool.

A Process Algebra for Modeling Secure Movements of Distributed Mobile Processes (분산 이동 프로세스 이동의 안전성 모델링을 위한 프로세스 대수)

  • Choe, Yeongbok;Lee, Moonkun
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.314-326
    • /
    • 2016
  • Some process algebras were applied to enterprise business modelling for formal specification and verification. ${\pi}$-calculus and mobile ambient can be considered for the distributed and mobile, especially to represent the movements of distributed real-time business processes. However there are some limitations to model the movements: 1) ${\pi}$-calculus passes the name of port for indirect movements, and 2) mobile ambient uses ambient to synchronize asynchronous movements forcefully. As a solution to the limitations, this paper presents a new process algebra, called ${\delta}$-calculus, to specify direct and synchronous movements of business processes over geo-temporal space. Any violation of safety or security of the systems caused by the movements can be indicated by the properties of the movements: synchrony, priority and deadline. A tool, called SAVE, was developed on ADOxx metamodelling platform to demonstrate the concept.