• Title/Summary/Keyword: ADM-Aeolus

Search Result 2, Processing Time 0.015 seconds

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System (KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화)

  • Lee, Sihye;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Seol, Kyung-Hee;Jeong, Han-Byeol;Kim, Won-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.

Calibration and Validation Activities for Earth Observation Mission Future Evolution for GMES

  • LECOMTE Pascal
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.237-240
    • /
    • 2005
  • Calibration and Validation are major element of any space borne Earth Observation Mission. These activities are the major objective of the commissioning phases but routine activities shall be maintained during the whole mission in order to maintain the quality of the product delivered to the users or at least to fully characterise the evolution with time of the product quality. With the launch of ERS-l in 1991, the European Space Agency decided to put in place a group dedicated to these activities, along with the daily monitoring of the product quality for anomaly detection and algorithm evolution. These four elements are all strongly linked together. Today this group is fully responsible for the monitoring of two ESA missions, ERS-2 and Envisat, for a total of 12 instruments of various types, preparing itself for the Earth Explorer series of five. other satellites (Cryosat, Goce, SMOS, ADM-Aeolus, Swarm) and at various levels in past and future Third Party Missions such as Landsat, J-ERS, ALOS and KOMPSAT. The Joint proposal by the European Union and the European Space Agency for a 'Global Monitoring for Environment and Security' project (GMES), triggers a review of the scope of these activities in a much wider framework than the handling of single missions with specific tools, methods and activities. Because of the global objective of this proposal, it is necessary to put in place Multi-Mission Calibration and Validation systems and procedures. GMES Calibration and Validation activities will rely on multi source data access, interoperability, long-term data preservation, and definition standards to facilitate the above objectives. The scope of this presentation is to give an overview of the current Calibration and Validation activities at ESA, and the planned evolution in the context of GMES.

  • PDF