• Title/Summary/Keyword: ADHESION

Search Result 5,696, Processing Time 0.028 seconds

Cellular responses to 3D printed dental resins produced using a manufacturer recommended printer versus a third party printer

  • Beatriz Sona Cardoso;Mariana Brito da Cruz;Joana Faria Marques;Joao Carlos Roque;Joao Paulo Martins;Rodrigo Cordeiro Malheiro;Antonio Duarte da Mata
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.126-138
    • /
    • 2024
  • PURPOSE. The aim of this study was to evaluate the influence of different 3D dental resins, using a manufacturer recommended printer and a third-party printer, on cellular responses of human gingival cells. MATERIALS AND METHODS. Three NextDent resins (Denture 3D+, C&B MFH and Crowntec) were used to produce specimens on printers NextDent 5100 (groups ND, NC and NT, respectively) and Phrozen Sonic Mini 4K (groups PD, PC and PT, respectively). Human gingival fibroblasts were cultured and biocompatibility was evaluated on days 1, 3 and 7. IL-6 and IL-8 concentrations were evaluated at 3 days using ELISA. Surface roughness was evaluated by a contact profilometer. SEM and fluorescence micrographs were analyzed at days 1 and 7. Statistical analyses were performed using SPSS and mean differences were tested using ANOVA and post-hoc Tukey tests (P < .05). RESULTS. There was an increase in cellular viability after 7 days in groups PC and PT, when compared to group PD. ND group resulted in higher concentration of IL-6 when compared to PT group. SEM and fluorescence micrographs showed less adhesion and thinner morphology of fibroblasts from group PD. No significant differences were found regarding surface roughness. CONCLUSION. The use of different printers or resins did not seem to influence surface roughness. NextDent 5100 and Phrozen Sonic Mini 4K produced resins with similar cellular responses in human gingival fibroblasts. However, Denture 3D+ resin resulted in significantly lower biocompatibility, when compared to C&B MFH and Crowntec resins. Further testing is required to support its long-term use, required for complete dentures.

Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag (전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성)

  • Hyeongjoo Kim;Taegew Ham;Taewoong Park;Taeeon Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2024
  • This study aimed to investigate the changes in chemical components that occur when weak clay is mixed with steel slag modified with calcium oxide, and to understand the expression characteristics of compressive strength according to hydrophilicity and curing time. XRF testing, SEM imaging, vane shear strength and uniaxial compressive strength testing were conducted. Calcium (Ca) released from the steel slag increases the Ca content in clay by increasing the number of crystal particles and forming a coating layer known as calcium silicate hydrate (CaO-SiO2-H2O) through chemical reactions with SiO2 and Al2O3 components. The weak clay stabilized with steel slag is classified into an initial inactive zone where strength relatively does not increase and an activation zone where strength increases over curing time. The vane shear strength of the initial inactive area was found to be 4.4 to 18.4 kN/m2 in the state of the weight mixing ratio Rss 30% (steel slag 30% + clay 70%). In the case of the active area, the maximum uniaxial compressive strength increased to 431.8 kN/m2 after 480 hours of curing time, which increased due to the apparent adhesion strength of clay through pozzolanic reaction. Therefore, considering the strength expression characteristics of stabilized mixed clay based on the mixing ratio (Rss) during the recycling of steel slag can enhance its practicality in civil engineering sites.

Ginseng-derived type I rhamnogalacturonan polysaccharide binds to galectin-8 and antagonizes its function

  • Yi Zheng;Yunlong Si;Xuejiao Xu;Hongming Gu;Zhen He;Zihan Zhao;Zhangkai Feng;Jiyong Su;Kevin H. Mayo;Yifa Zhou;Guihua Tai
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.202-210
    • /
    • 2024
  • Background: Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods: P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results: Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its β-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion: P. ginseng RG-I pectin β-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.

Development and Research of MMA Waterproof Coating and Waterproof System for Concrete Civil Structures (콘크리트 토목구조물 교면용 MMA 도막방수재 및 교면방수 시스템의 개발 연구)

  • Chul-Woo Lim;Sang-Ho Ji;Ki-Won An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2024
  • Asphalt-based waterproofing materials for bridge decks face issues such as softening or liquefaction of the material during the process of pouring hot asphalt concrete on top of the waterproofing layer. This leads to instability and reduced thickness of the waterproofing layer. To address these problems, new solutions beyond the existing materials, including the development and adoption of new materials, are required. Therefore, this study investigates the properties of MMA(Methyl Methacrylate) coating waterproofing material, which meets the basic physical properties for bridge deck waterproofing. We examined the overall quality standards in a system where the substrate concrete, waterproofing material, and paving layer are integrated. The study confirmed the applicability of MMA coating waterproofing material on bridge decks. The results indicate that a stable application of MMA coating waterproofing material for civil engineering structures' bridge decks can be achieved with a mix ratio of hard MMA resin : soft MMA resin : powder = 6 : 34 : 60. Additionally, when using emulsified asphalt with hardening characteristics for the adhesion between the dissimilar materials of MMA waterproofing and asphalt concrete, it is expected to meet the minimum quality standards of the Ministry of Land, Infrastructure, and Transport's 'Guidelines for Asphalt Concrete Pavement Construction (2021.07)'.

Growth performance, carcass characteristics and meat sensory evaluation of broiler chickens fed diets with fermented cassava leaves

  • Arti Bhavna;Titus J. Zindove;Paul A. Iji;Archibold G. Bakare
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1225-1235
    • /
    • 2024
  • Objective: The objective of the study was to determine the effects of feeding fermented cassava leaf meal (FCLM) on growth performance, carcass characteristics and meat sensory evaluation of broiler chickens. Methods: A total of 160 Cobb-500 chickens were used during the phases of growing (21 days of age; initial weight 0.39±0.025 kg/bird) and finishing (35 days of age; initial weight 1.023±0.164 kg/bird). The whole experiment lasted for four weeks. The FCLM was included in starter and finishing diets at 0, 50, 100, and 150 g/kg inclusion levels. Total feed intake (TFI), weight gain (WG), feed conversion ratio, and nutrient digestibility were recorded. Sensory evaluation of breast meat was used to determine the eating quality of the meat prepared using roasting and boiling methods. Results: The TFI and WG decreased (p<0.05) with increasing inclusion levels of FCLM in the diets of growing chickens. Crude protein digestibility for chickens fed 0 and 50 g/kg FCLM was higher (p<0.05) than for chickens subjected to a diet with 150 g/kg FCLM. During the finishing phase, TFI increased linearly (p<0.05) with increasing inclusion level of FCLM in chicken diets, while WG decreased (p<0.05) with inclusion level of FCLM. Treatment diets had no effect (p>0.05) on the eating qualities of breast meat. However, juiciness was significant (p<0.05) for the cooking method and treatment interaction. At 50 g/kg inclusion level, boiled meat had a higher (p<0.05) juiciness score than roasted meat. Tenderness, on the other hand, was significant (p<0.05) for the interaction of gender and treatment. Females considered the boiled meat to be more tender than the males at 150 g/kg inclusion level. Using principal component analysis, a positive correlation was observed between teeth adhesion and fibrousness, flavour and juiciness, and springiness and tenderness. Conclusion: From the study, it can be concluded that FCLM can be used as an ingredient in the diets of broiler chickens. Inclusion level of 50 g/kg can be used in chicken diets during the growing phase, whereas in the finishing phase, inclusion level of 150 g/kg FCLM can be used. The FCLM did not affect the eating quality of breast meat.

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

A study on a reasonable modeling method of fully grouted rockbolt (전면접착형 록볼트의 거동 특성을 고려한 합리적인 모델링 방법에 대한 연구)

  • Hong-Joo Lee;Kyung-Nam Kang;Ki-Il Song;Sang-Don Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.19-37
    • /
    • 2024
  • Rockbolts are the primary-supports in NATM tunnels and are widely used at tunnel construction sites. Among the rockbolts methods applied in domestic tunnel design, fully grouted rockbolts are the most representative and frequently used. Fully grouted rockbolts exhibit relative behavior between the bolt and the ground due to the grout material. However, during numerical analysis for tunnel design, fully grouted rockbolts are often modeled in a way that does not reflect their behavior characteristics. This may result in underestimating or overestimating the force of the supports. Based on a literature review, it was analyzed that fully grouted rockbolts are modeled using truss element or cable element. To analyze the effect of grout properties of cable elements on rockbolts behavior, this paper compared the behavior of rockbolts in two models: one estimating grout properties based on rockbolt pull-out test data, and another assuming complete adhesion between the rockbolts and the ground by applying large grout properties. Under identical tunnel conditions, the numerical analysis was conducted by modeling the fully grouted rockbolts differently using truss and cable elements, and the tunnel behavior was analyzed. The research results suggest that modeling fully grouted rockbolts as a function of the interface effect between the bolts and the ground, specifically considering grout, is desirable. The use of pull-out test data to simulate the behavior of actual fully grouted rockbolts was considered as a valid approach.

An Experimental Study on the Evaluation of Shear Strength of Weathered Soil Containing Coarse Particles (굵은 입자가 포함된 풍화토의 전단강도 평가에 대한 실험연구)

  • Joon-Seok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.169-176
    • /
    • 2024
  • Purpose: In this paper, an experimental study was conducted to analyze the difference in shear strength caused by the problem of excluding coarse particles due to the size of the test specimen in the direct shear test. Method: A large-scale direct shear test was conducted on three weathered soils containing coarse aggregates with a maximum diameter of 50mm. In addition, a small-scale direct shear test was performed using a sample with a maximum diameter of 5 mm, excluding coarse aggregates. Result: In the case of the small-scale direct shear test, compared to the results of the large-scale direct shear test containing large particles, the internal friction angle was about 2.3% smaller, and there was no significant difference. In terms of cohesion, compared to the large-scale direct shear test, the small-scale direct shear test derived about 80.3% smaller value, showing a relatively large difference. Conclusion: In the large-scale direct shear test, it was analyzed that the coarse particles had a greater impact on the cohesion than the internal friction angle. Therefore, granite weathered clay containing coarse particles is judged to have the same shear strength as the cohesive force that is not affected by vertical stress. In this study, it was analyzed that the small-scale direct shear test, which excludes the coarse particles that are commonly used, provides results on the safety side by excluding the effect of coarse particles.

Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode (실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계)

  • Eun Young Lim;Eunsol Lee;Jin Hong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.309-315
    • /
    • 2024
  • Silicon and carbon composite (SiC) is considered one of the most promising anode materials for the commercialization of Si-based anodes, as it could simultaneously satisfy the high theoretical capacity of Si and the high electronic conductivity of carbon. However, SiC active material undergoes repeated volumetric changes during charge/discharge processes, leading to continuous electrolyte decomposition and capacity fading, which is still considered an issue that needs to be addressed. To solve this issue, we suggest a 4,4'-Methylenebis(cyclohexyl isocyanate) (H12MDI)-based waterborne polyurethane binder (HPUD), which forms a 3D network structure through thermal cross-linking reaction. The cross-linked HPUD (denoted as CHPU) was prepared using an epoxy ring-opening reaction of the cross-linker, triglycidyl isocyanurate (TGIC), via simple thermal treatment during the SiC anode drying process. The SiC anode with the CHPU binder, which exhibited superior mechanical and adhesion properties, not only demonstrated excellent rate and cycling performance but also alleviated the volume expansion of the SiC anode. This work implies that eco-friendly binders with cross-linked structures could be utilized for various Si-based anodes.

Evaluation of Wear Characteristics of Low-alloy Steel Brake Discs for High Energy Capacity (고에너지용 저합금강 제동디스크의 마모 특성 평가)

  • Dong-gyu Lee;Kyung-il Kim;Gue-Serb Cho;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.532-537
    • /
    • 2024
  • In this study, wear characteristics and microstructure changes due to changes in alloy composition of Ni-Cr-Mo-V and Ni-Cr-Mo low-alloy steels used in brake discs for transportation system such as aircraft and high-speed trains. As a result of the hardness test, the hardness of C-Mo-V steel was the highest at 39.4±0.9HRc, and the hardness of Ni-Cr-Mo steel was the lowest at 32.4±0.6HRc. The friction coefficient tended to decrease as the vertical load increased. At a vertical load of 1 N, the friction coefficient of Ni-Cr-Mo steel was the highest at 0.842, and at a vertical load of 5 N, Mn-Cr-V steel was the highest at 0.696. Ni-Cr-Mo showed the largest wear scar width, depth, and wear amount, with a width of 711 ㎛, a depth of 8.24 ㎛, and a wear amount of 11 mg under a vertical load of 1 N, and a width of 1,017 ㎛, a depth of 19.17 ㎛, and a wear amount of 17 mg under a vertical load of 5 N. As a result of wear mechanism analysis, ploughing, delamination, and adhesion in all specimens, with plastic deformation being more prominently observed in Ni-Cr-Mo.