• Title/Summary/Keyword: ADAS (Advanced Driver Assistance System)

Search Result 69, Processing Time 0.027 seconds

A Study on Evaluation Method of the LKAS Test in Domestic Road Environment (국내도로환경을 고려한 LKAS 시험평가 방법에 관한 연구)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.628-637
    • /
    • 2017
  • The automobile industry has developed Advanced Driver Assistance Systems (ADASs) to prevent traffic accidents and reduce the burden for drivers. One example is the Lane Keeping Assistance System (LKAS), which was developed for automotive vehicle systems for safety and better driving. The main system of the LKAS supports the driver while maintaining the vehicle within a lane. LKAS uses a radar sensor and camera sensor to collect information about the vehicle's position in the lane and send commands to the actuator to influence the lateral movement of the vehicle if necessary. Recently, vehicles equipped with LKAS have become commercially available. Test procedures for international LKAS evaluation are being discussed and developed by international committees, such as the International Organization for Standardization and United Nations Economic Commission for Europe. In Korea, an evaluation of LKASs for car safety is being planned by the Korean New Car Assessment Program. Therefore, test procedures should be developed for LKASs that are suitable for the domestic road environment while accommodating international standards. We developed a test scenario for LKASs and propose a formula for obtaining the target relative distance. To validate the methods, a series of experiments were conducted using commercially available vehicles equipped with LKAS.

Implementation of FMCW Radar Signal Processing Module Using MPC5775K (MPC5775K를 이용한 FMCW 레이더 신호처리부 구현)

  • Seo, Min-kyo;Oh, Woojin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.684-685
    • /
    • 2017
  • FMCW radar, which is widely used as a front collision warning system for vehicles, is now being commercialized. In this study we develope the radar signal processing system using MPC5775K that is specialized for high performance ADAS. That has special features for ADAS such as 10Msps 12bit ADC, 50MHz Radix-4 FFT, CTE(Cross Triggering Engine) for synchronized triggering between DAC and ADC. The baseband processing board is implemented and shows the result in Matlab.

  • PDF

A Study on Development of High Risk Test Scenario and Evaluation from Field Driving Conditions for Autonomous Vehicle (실도로 주행 조건 기반의 자율주행자동차 고위험도 평가 시나리오 개발 및 검증에 관한 연구)

  • Chung, Seunghwan;Ryu, Je Myoung;Chung, Nakseung;Yu, Minsang;Pyun, Moo Song;Kim, Jae Bu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.40-49
    • /
    • 2018
  • Currently, a lot of researches about high risk test scenarios for autonomous vehicle and advanced driver assistance systems have been carried out to evaluate driving safety. This study proposes new type of test scenario that evaluate the driving safety for autonomous vehicle by reconstructing accident database of national automotive sampling system crashworthiness data system (NASS-CDS). NASS-CDS has a lot of detailed accident data in real fields, but there is no data of accurate velocity in accident moments. So in order to propose scenario generation method from accident database, we try to reconstruct accident moment from accident sketch diagram. At the same step, we propose an accident of occurrence frequency which is based on accident codes and road shapes. The reconstruction paths from accident database are integrated into evaluation of simulation environment. Our proposed methods and processor are applied to MILS (Model In the Loop Simulation) and VILS (Vehicle In the Loop Simulation) test environments. In this paper, a reasonable method of accident reconstruction typology for autonomous vehicle evaluation of feasibility is proposed.

Technology Acceptance Modeling based on User Experience for Autonomous Vehicles

  • Cho, Yujun;Park, Jaekyu;Park, Sungjun;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.87-108
    • /
    • 2017
  • Objective: The purpose of this study was to precede the acceptance study based on automation steps and user experience that was lacked in the past study on the core technology of autonomous vehicle, ADAS. The first objective was to construct the acceptance model of ADAS technology that is the core technology, and draw factors that affect behavioral intention through user experience-based evaluation by applying driving simulator. The second one was to see the change of factors on automation step of autonomous vehicle through the UX/UA score. Background: The number of vehicles with the introduction of ADAS is increasing, and it caused change of interaction between vehicle and driver as automation is being developed on the particular drive factor. For this reason, it is becoming important to study the technology acceptance on how driver can actively accept giving up some parts of automated drive operation and handing over the authority to vehicle. Method: We organized the study model and items through literature investigation and the scenario according to the 4 stages of automation of autonomous vehicle, and preceded acceptance assessment using driving simulator. Total 68 men and woman were participated in this experiment. Results: We drew results of Performance Expectancy (PE), Social Influence (SI), Perceived Safety (PS), Anxiety (AX), Trust (T) and Affective Satisfaction (AS) as the factors that affect Behavioral Intention (BI). Also the drawn factors shows that UX/UA score has a significant difference statistically according to the automation steps of autonomous vehicle, and UX/UA tends to move up until the stage 2 of automation, and at stage 3 it goes down to the lowest level, and it increases a little or stays steady at stage 4. Conclusion and Application: First, we presented the acceptance model of ADAS that is the core technology of autonomous vehicle, and it could be the basis of the future acceptance study of the ADAS technology as it verifies through user experience-based assessment using driving simulator. Second, it could be helpful to the appropriate ADAS development in the future as drawing the change of factors and predicting the acceptance level according to the automation stages of autonomous vehicle through UX/UA score, and it could also grasp and avoid the problem that affect the acceptance level. It is possible to use these study results as tools to test validity of function before ADAS offering company launches the products. Also it will help to prevent the problems that could be caused when applying the autonomous vehicle technology, and to establish technology that is easily acceptable for drivers, so it will improve safety and convenience of drivers.

An evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle (자율주행 자동차 임시운행 허가를 위한 안전 성능 평가 시나리오)

  • Jeong, Yonghwan;Yi, Kyongsu;Choi, In Seong;Min, Kyong Chan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • This paper presents an evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle driving on a motorway. Based on advanced driver assistance system (ADAS) which is already mass-production, an autonomous vehicle driving on motorway is tested on the public roads and also getting close to mass-production. Before the autonomous vehicle tested, the safety of autonomous driving system should be evaluated based on a proper test scenario. Prior to develop the test scenario, this paper reviews the licensing standards for an autonomous vehicle in California and Nevada, and the international regulations of each ADAS. To develop the scenario, the driving conditions of motorway are categorized into five modes and fundamental evaluation requirements of elements of autonomous driving system are derived. An evaluation scenario, which represents the real driving conditions, has been developed to assess the safety of autonomous vehicle. This scenario has validated by computer simulation using model predictive control (MPC) based autonomous driving algorithm.

A Study on Sled Test Method for Evaluating Autonomous Vehicle Crash Safety (자율주행자동차 충돌안전성 평가를 위한 Sled 기반 시험방법에 대한 고찰)

  • Hoyeol Lee;Jeongmin In;Hyungjin Chang;Myungsu Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.3
    • /
    • pp.55-63
    • /
    • 2024
  • As autonomous driving performance, such as automatic emergency braking (AEB) and advanced driver assistance systems (ADAS), continues to improve, collision angles and occupant seating postures become more diverse, and there is a need to study how occupant injury mechanisms change depending on the type of collision. Accordingly, a representative crash test mode was derived. Using the derived crash test mode, we analyzed the crash injury mechanism according to the impact angle and the occupant's seating posture (seat back angle). Sled is a crash simulation test that applies a pulse corresponding to the vehicle body acceleration pulse generated during a collision. Sled testing has advantages in terms of cost and time compared to actual vehicle crash testing. We focus on the correlation between crash tests reflecting autonomous vehicle crash modes and Sled tests. The results obtained through this study can be used to develop new crash evaluation methods. As a result, we will present the results of an experimental study on the actual vehicle crash test Sled test method.

Estimation of Traffic Safety Improvement Effect of Forward Collision Warning (FCW) (전방충돌경보(FCW)의 교통안전 증진효과 추정)

  • Kim, Hyung-kyu;Lee, Soo-beom;Lee, Hye-rin;Hong, Su-jeong;Min, hye-Ryung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.43-57
    • /
    • 2021
  • The Forward Collision Warning, a representative technology of the Advanced Driver Assistance Systems, was selected as the target technology. The cognitive response time, deceleration, and impact were selected as the measures of effectiveness. And the amount of change with and without the Forward Collision Warning was measured. The experimental scenarios included a sudden stop event (1) of the vehicle in front of the driver and an event (2) in which the vehicle intervened in the next lane. All experiments were divided into day and night. As a result of the analysis, response time and the deceleration rate decreased when the forward collision warning system was installed. It was analyzed that the driver's risk situation could be detected quickly and the number of front-end collisions could be reduced as a result. Reflecting the driver's operating habits and diversifying the experimental scenarios will increase the installation effectiveness of ADAS and be used to estimate the effectiveness of other technologies.

Korean Traffic Speed Limit Sign Recognition in Three Stages using Morphological Operations (형태학적 방법을 사용한 세 단계 속도 표지판 인식법)

  • Chirakkal, Vinjohn;Kim, SangKi;Kim, Chisung;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.516-517
    • /
    • 2015
  • The automatic traffic sign detection and recognition has been one of the highly researched and an important component of advanced driver assistance systems (ADAS). They are designed especially to warn the drivers of imminent dangers such as sharp curves, under construction zone, etc. This paper presents a traffic sign recognition (TSR) system using morphological operations and multiple descriptors. The TSR system is realized in three stages: segmentation, shape classification and recognition stage. The system is designed to attain maximum accuracy at the segmentation stage with the inclusion of morphological operations and boost the computation time at the shape classification stage using MB-LBP descriptor. The proposed system is tested on the German traffic sign recognition benchmark (GTSRB) and on Korean traffic sign dataset.

  • PDF

Localization Requirements for Safe Road Driving of Autonomous Vehicles

  • Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.389-395
    • /
    • 2022
  • In order to ensure reliability the high-level automated driving such as Advanced Driver Assistance System (ADAS) and universal robot taxi provided by autonomous driving systems, the operation with high integrity must be generated within the defined Operation Design Domain (ODD). For this, the position and posture accuracy requirements of autonomous driving systems based on the safety driving requirements for autonomous vehicles and domestic road geometry standard are necessarily demanded. This paper presents localization requirements for safe road driving of autonomous ground vehicles based on the requirements of the positioning system installed on autonomous vehicle systems, the domestic road geometry standard and the dimensions of the vehicle to be designed. Based on this, 4 Protection Levels (PLs) such as longitudinal, lateral, vertical PLs, and attitude PL are calculated. The calculated results reveal that the PLs are more strict to urban roads than highways. The defined requirements can be used as a basis for guaranteeing the minimum reliability of the designed autonomous driving system on roads.

Age-related Deficits in Response Characteristics on Safety Warning of Intelligent Vehicle (지능형 자동차의 안전 경고음에 대한 고령운전자의 반응 특성)

  • Kim, Man-Ho;Lee, Yong-Tae;Son, Joon-Woo;Jang, Chee-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.131-137
    • /
    • 2009
  • Recent technological advances made a vehicle more intelligent to increase safety and comfort. An intelligent vehicle provides drivers with safety warning information through audible sounds, visual displays, and tactile devices. However, elderly drivers have been known to decrease the physical and cognitive abilities such as muscular strength, hearing, eyesight, short term memory, and spatial perception. Therefore, possible age-related deficits should be considered to design an effective warning system. This paper aims to evaluate the impact of advancing age on response performance on audible safety warnings which are widely used for alerting driving hazards. In order to understand the effect of age-related hearing loss and movement slowing, three sound characteristics (frequency, intensity, and period) and three age groups (younger, middle, and older) are considered. Data was drawn from 38 drivers who drove a simulated rural road in a driving simulator. Experimental results show that age influences driver's response performance. In conclusion, the appropriate range of a warning sound is suggested.