• Title/Summary/Keyword: ADAMS(Automatic Dynamic Analysis of Mechanical Systems)

Search Result 3, Processing Time 0.019 seconds

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

Development of An Optimal Design Program for Open-Chain Dynamic Systems (불구속연쇄 동적시스템을 위한 최적설계 프로그램 개발)

  • 최동훈;한창수;이동수;서문석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.12-23
    • /
    • 1994
  • This paper proposes an optimal design software for the open-chain dynamic systems whose governing equations are expressed as differential equation. In this software, an input module and an automatic creation module of the equation of motion are developed to contrive the user's convenience. To analyze the equation of motion of the dynamic systems, variable-order and variable-stepsize Adams-Bashforth-Moulton predictor-corrector method is used to improve the efficiency. For the optimization and the design sensitivity analysis, ALM(augmented lagrange multiplier)method and adjoint variable method are adopted respectively. An output module with which the user can compare and investigate the analysis and the optimization results through tables and graphs is also provided. The developed software is applied to three typical dynamic response optimization problems, and the results compare very well with those available in the literature, demonstrating its effectiveness.

Movable Nozzle Performance Analysis by Using ADAMS (ADAMS를 이용한 가동 노즐 성능 평가 기법)

  • Kim, Joung-Keun;Jang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.30-35
    • /
    • 2009
  • Effective-pivot effects on the thrust vector control performance of the flexible seal nozzle to be used to control the flight direction of missile were investigated by computer simulation. $2^3$-Design of experiment technique was applied and ADMAS was used for the surrogate technique. As a result, radial pivot position had more influence upon the nozzle actuating performance than axial pivot position. Connecting method of actuator was also important factor in determining effective-pivot effects on the thrust vector control performance of the flexible seal nozzle.