• Title/Summary/Keyword: ADALINE

Search Result 24, Processing Time 0.017 seconds

Dynamic visual servo control of robotic manipulators using neural networks (신경 회로망을 이용한 로보트의 동력학적 시각 서보 제어)

  • 박재석;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1012-1016
    • /
    • 1991
  • An effective visual servo control system for robotic manipulators based on neural networks is proposed. For this control system, firstly, one neural network is used to learn the mapping relationship between the robot's joint space and the video image space. However, in the proposed control scheme, this network is not used in itself, but its first and second derivatives are used to generate servo commands for the robot. Secondly, an adaptive Adaline network is used to identify the dynamics of the robot and also to generate the proper torque commands. Computer simulation has been performed indicating its superior performance. As far as the authors know, this is the first time attempt of the use of neural networks for a visual servo control of robots that compensates for their changing dynamics.

  • PDF

Dynamic Visual Servo Control of Robot Manipulators Using Neural Networks (신경 회로망을 이용한 로보트의 동력학적 시각 서보 제어)

  • 박재석;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.37-45
    • /
    • 1992
  • For a precise manipulator control in the presence of environmental uncertainties, it has long been recognized that the robot should be controlled in a task-referenced space. In this respect, an effective visual servo control system for robot manipulators based on neural networks is proposed. In the proposed control system, a Backpropagation neural network is used first to learn the mapping relationship between the robot's joint space and the video image space. However, in the real control loop, this network is not used in itself, but its first and second derivatives are used to generate servo commands for the robot. Second, and Adaline neural network is used to identify the approximately linear dynamics of the robot and also to generate the proper joint torque commands. Computer simulation has been performed demonstrating the proposed method's superior performance. Futrhermore, the proposed scheme can be effectively utilized in a robot skill acquisition system where the robot can be taught by watching a human behavioral task.

  • PDF

Adaptive Neural PLL for Grid-connected DFIG Synchronization

  • Bechouche, Ali;Abdeslam, Djaffar Ould;Otmane-Cherif, Tahar;Seddiki, Hamid
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.608-620
    • /
    • 2014
  • In this paper, an adaptive neural phase-locked loop (AN-PLL) based on adaptive linear neuron is proposed for grid-connected doubly fed induction generator (DFIG) synchronization. The proposed AN-PLL architecture comprises three stages, namely, the frequency of polluted and distorted grid voltages is tracked online; the grid voltages are filtered, and the voltage vector amplitude is detected; the phase angle is estimated. First, the AN-PLL architecture is implemented and applied to a real three-phase power supply. Thereafter, the performances and robustness of the new AN-PLL under voltage sag and two-phase faults are compared with those of conventional PLL. Finally, an application of the suggested AN-PLL in the grid-connected DFIG-decoupled control strategy is conducted. Experimental results prove the good performances of the new AN-PLL in grid-connected DFIG synchronization.

Multiple Switches Open-Fault Diagnosis Using ANNs of Two-Step Structure for Three-Phase PWM Converters (Two-Step 구조의 인공신경망을 이용한 3상 PWM 컨버터의 다중 스위치 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.282-283
    • /
    • 2020
  • 3상 컨버터에서 스위치의 개방고장이 발생한 경우 고장 전류에 직류 및 고조파 성분이 발생할 수 있으며, 보호회로에 의한 고장 감지가 어려우므로 주변 기기에 2차 고장이 발생할 수 있다. 단일 및 이중 스위치 개방고장의 경우 21가지 고장 모드가 존재한다. 본 논문에서는 이러한 고장 모드를 진단하기 위해 정지 좌표계 d-q축 전류의 직류 및 고조파 성분을 활용하는 two-step 구조의 ANN(Artificial Neural Network)을 제안한다. 고장 시에 발생된 직류 및 고조파 성분 전류는 ADALINE(Adaptive-Linear Neuron)을 통해 얻는다. 고장 진단의 첫 번째 단계에서는 직류 성분을 기반으로 ANN을 이용하여 고장모드를 6개 영역으로 분류한다. 두 번째 단계에서는 6개의 각 영역에서 직류 성분과 전류의 THD(Total Harmonics Distortion)를 기반으로 ANN을 이용하여 개방고장이 발생한 스위치를 진단한다. 제안된 Two-step 방법으로 고장을 진단하므로써 간단한 구조로 ANN의 설계가 가능하다. 3.7kW급 3상 PWM 컨버터로 실험을 통해 제안된 방법의 효용성을 검증하였다.

  • PDF