• Title/Summary/Keyword: ACTN4

Search Result 7, Processing Time 0.023 seconds

Polygenic Association of ACE and ACTN3 Polymorphisms with Korean Power Performance (ACE와 ACTN3의 다중유전형질과 근력운동 경기력간의 관계)

  • Kim, Chul-Hyun
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.398-406
    • /
    • 2012
  • This study aimed to examine whether the polygenic profile of ACE ID and ACTN3 R577X polymorphisms is associated with muscle power performance in Korean athletes. For this study, 106 top-class power athletes (top-class group), 158 elite power athletes (elite-class group), and 676 healthy adults (control) aged 18-39 yrs were recruited and their genotypes were analyzed. The top-class group showed higher frequencies of the II genotype and I allele in ACE, as well as higher frequencies of the RR genotype and R allele in ACTN3 (top-class vs. control: 41.4% vs. 32.1% for II genotype, 67.1% vs. 57.7% for I allele, p<0.05; 42.3% vs. 29.0% for RR genotype, 65.3% vs. 54.8% for I allele, p<0.05). In the polygenic profile, the top-class group had significantly higher frequencies of combined-II/ID+RR/RX genotype than the control group (top-class vs. control: 82.9% vs. 66.7% for II/ID+RR/RX, p<0.05), and there was even a sharp increase in total genotype score (TGS) in this group compared to the elite-class and control groups ($66{\pm}0.9$ vs. $58{\pm}1.9$ vs. $56{\pm}2.3$, p<0.05). The combined-II/ID+RR/RX genotype showed the possibility of succussion in the top-class muscle power performance with an odds ratio of 2.3 (CI:1.4-4.1, p<0.05). These results suggested that ACE and ACTN3 need to interact with each other to affect muscle-power performance in an additive form. Furthermore, the polygenic profile of ACE and ACTN3 can predict muscle performance with high success in a homogeneous dominant combined genotype (II/ID+RR/RX). A further study could identify and combine other genes into ACE and ACTN3 for muscle strength.

Genetic analysis using whole-exome sequencing in pediatric chronic kidney disease: a single center's experience

  • Lee, Hyeonju;Min, Jeesu;Ahn, Yo Han;Kang, Hee Gyung
    • Childhood Kidney Diseases
    • /
    • v.26 no.1
    • /
    • pp.40-45
    • /
    • 2022
  • Purpose: Chronic kidney disease (CKD) has various underlying causes in children. Identification of the underlying causes of CKD is important. Genetic causes comprise a significant proportion of pediatric CKD cases. Methods: In this study, we performed whole-exome sequencing (WES) to identify genetic causes of pediatric CKD. From January to June 2021, WES was performed using samples from pediatric patients with CKD of unclear etiology. Results: Genetic causes were investigated using WES in 37 patients (17 males) with pediatric CKD stages 1 (n=5), 2 (n=7), 3 (n=2), 4 (n=2), and 5 (n=21). The underlying diseases were focal segmental glomerulosclerosis (n=9), congenital anomalies of the kidney and urinary tract including reflux nephropathy (n=8), other glomerulopathies (n=7), unknown etiology (n=6), and others (n=7). WES identified genetic causes of CKD in 12 of the 37 patients (32.4%). Genetic defects were discovered in the COL4A4 (n=2), WT1 (n=2), ACTN4, CEP290, COL4A3, CUBN, GATA3, LAMA5, NUP107, and PAX2 genes. WT1 defects were found in patients whose pathologic diagnosis was membranoproliferative glomerulonephritis, and identification of CUBN defects led to discontinuation of immunosuppressive agents. Genetic diagnosis confirmed the clinical diagnosis of hypoparathyroidism, sensorineural deafness, and renal disease; Alport syndrome; and Joubert syndrome in three of the patients with CKD of unknown etiology (COL4A4 [n=2], CUBN [n=1]). Extrarenal symptoms were considered phenotypic presentations of WT1, PAX2, and CEP290 defects. Conclusions: WES provided a genetic diagnosis that confirmed the clinical diagnosis in a significant proportion (32.4%) of patients with pediatric CKD.

Functional Characterization and Proteomic Analysis of Porcine Deltacoronavirus Accessory Protein NS7

  • Choi, Subin;Lee, Changhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1817-1829
    • /
    • 2019
  • Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in neonatal piglets. Like other coronaviruses, PDCoV encodes at least three accessory or species-specific proteins; however, the biological roles of these proteins in PDCoV replication remain undetermined. As a first step toward understanding the biology of the PDCoV accessory proteins, we established a stable porcine cell line constitutively expressing the PDCoV NS7 protein in order to investigate the functional characteristics of NS7 for viral replication. Confocal microscopy and subcellular fractionation revealed that the NS7 protein was extensively distributed in the mitochondria. Proteomic analysis was then conducted to assess the expression dynamics of the host proteins in the PDCoV NS7-expressing cells. High-resolution two-dimensional gel electrophoresis initially identified 48 protein spots which were differentially expressed in the presence of NS7. Seven of these spots, including two up-regulated and five down-regulated protein spots, showed statistically significant alterations, and were selected for subsequent protein identification. The affected cellular proteins identified in this study were classified into functional groups involved in various cellular processes such as cytoskeleton networks and cell communication, metabolism, and protein biosynthesis. A substantial down-regulation of α-actinin-4 was confirmed in NS7-expressing and PDCoV-infected cells. These proteomic data will provide insights into the understanding of specific cellular responses to the accessory protein during PDCoV infection.

Protective effects of endurance exercise on skeletal muscle remodeling against doxorubicin-induced myotoxicity in mice

  • Kwon, Insu
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.11-21
    • /
    • 2020
  • [Purpose] Doxorubicin (DOX) is a potent anti-cancer drug that appears to have severe myotoxicity due to accumulation. The skeletal muscle has a regeneration capacity through satellite cell activation when exposed to extracellular stimulus or damage. Endurance exercise (EXE) is a therapeutic strategy that improves pathological features and contributes to muscle homeostasis. Thus, this study investigated the effect of EXE training in mitigating chronic DOX-induced myotoxicity. [Methods] Male C57BL/6J mice were housed and allowed to acclimatize with free access to food and water. All the mice were randomly divided into four groups: sedentary control (CON, n=9), exercise training (EXE, n=9), doxorubicin treatment (DOX, n=9), doxorubicin treatment and exercise training (DOX+EXE, n=9) groups. The animals were intraperitoneally injected with 5 mg/kg/week of DOX treatment for 4 weeks, and EXE training was initiated for treadmill adaptation for 1 week and then performed for 4 weeks. Both sides of the soleus (SOL) muscle tissues were dissected and weighed after 24 hours of the last training sessions. [Results] DOX chemotherapy induced an abnormal myofiber's phenotype and transition of myosin heavy chain (MHC) isoforms. The paired box 7 (PAX7) and myoblast determination protein 1 (MYOD) protein levels were triggered by DOX, while no alterations were shown for the myogenin (MYOG). DOX remarkably impaired the a-actinin (ACTN) protein, but the EXE training seems to repair it. DOX-induced myotoxicity stimulated the expression of the forkhead box O3 (FOXO3a) protein, which was accurately controlled and adjusted by the EXE training. However, the FOXO3a-mediated downstream markers were not associated with DOX and EXE. [Conclusion] EXE postconditioning provides protective effects against chronic DOX-induced myotoxicity, and should be recommended to alleviate cancer chemotherapy-induced late-onset myotoxicity.

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

Polymorphisms of the NR3C1 gene in Korean children with nephrotic syndrome (한국 신증후군 환아에서 NR3C1 유전자 다형성 분석)

  • Cho, Hee Yeon;Choi, Hyun Jin;Lee, So Hee;Lee, Hyun Kyung;Kang, Hee Kyung;Ha, Il Soo;Choi, Yong;Cheong, Hae Il
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.11
    • /
    • pp.1260-1266
    • /
    • 2009
  • Purpose : Idiopathic nephrotic syndrome (NS) can be clinically classified as steroid-sensitive and steroid-resistant. The detailed mechanism of glucocorticoid action in NS is currently unknown. Methods : In this study, we investigated 3 known single nucleotide polymorphisms (SNPs) (ER22/23EK, N363S, and BclI) of the glucocorticoid receptor gene (the NR3C1 gene) in 190 children with NS using polymerase chain reaction-restriction fragment length polymorphism and analyzed the correlation between the genotypes and clinicopathologic features of the patients. Results : Eighty patients (42.1%) were initial steroid nonresponders, of which 31 (16.3% of the total) developed end-stage renal disease during follow-up. Renal biopsy findings of 133 patients were available, of which 36 (31.9%) showed minimal changes in NS and 77 (68.1%) had focal segmental glomerulosclerosis. The distribution of the BclI genotypes was comparable between the patient and control groups, and the G allele frequencies in both the groups were almost the same. The ER22/23EK and N363S genotypes were homogenous as ER/ER and NN, respectively, in all the patients and in 100 control subjects. The BclI genotype showed no correlation with the NS onset age, initial steroid responsiveness, renal pathologic findings, or progression to end-stage renal disease. Conclusion : These data suggested that the ER22/23EK, N363S, and BclI SNPs in the NR3C1 gene do not affect the development of NS, initial steroid responsiveness, renal pathologic lesion, and progression to end-stage renal disease in Korean children with NS.