• Title/Summary/Keyword: ACSR conductor

Search Result 67, Processing Time 0.03 seconds

Development of a High Strength Conductor for Long Span (장경간용 고강도 가공송전선 개발)

  • Kim, Byung-Geol;Kim, Shang-Shu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.521-522
    • /
    • 2007
  • A new high strength conductor was designed for long span transmission line with a high nitrogen steel having high tensile strength and non-magnetic properties and high strength AI alloy. The tensile strength of conductor is very important to reduce the sag. The height of electric tower depend on the sag also. More than 36% less of sag was achieved by using ACHR(Aluminum conductor stranded high-nitrogen steel reinforced) instead of conventional ACSR.

  • PDF

A study on Mechanical and Material Characteristics of Overhead Transmission Lines due to an Artificial Flame (인공 화염으로 인한 가공 송전선의 기계적, 재료적 특성에 관한 연구)

  • Lee, Dae-Dong;Hyun, Dong-Seok;Shim, Jae-Myung;Kim, Young-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.407_408
    • /
    • 2009
  • Generally, the deterioration characteristics of a conductor affected by a forest fire can be analyzed through simulation of a forest fire and results of the simulation. However, there are little accomplishments of that kind of simulation applied to the power transmission, and there aren't actual analysis for a sample exposed in a forest fire. This paper deals with the experimental results that apply to a new wire by an artificial flame equipment because it's difficult to directly analyze the characteristic by a forest fire. Also, after an artificial flame is applied to a normal ACSR for various experimental conditions, changes of mechanical and material characteristics of the ACSR were analyzed by the surface inspection and load-tests of tensile of the ACSR. Then, the database will be made to made to predict the state of deteriorated wires by a forest fire using those two data, and data necessary to diagnose the life state of an ACSR wire affected by a forest fire will be given.

  • PDF

Development of Deterioration Diagnosis System for Aged ACSR-OC Conductors in HV Overhead Distribution Lines (고압 가공배전선의 노화된 ACSR-OC 도체에 대한 열화진단시스템 개발)

  • 김성덕;이승호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.43-50
    • /
    • 2000
  • Design and experiments of a nondestructive testing system with a solenoid eddy current sensor to inspect deterioration of ASCR-OC (ACSR Outdoor Cross-linked Polyethylene Insulated Wires) usually used in HV overhead distribution lines in domestic areas in presented in this paper. Through corrosion mechanisms and deterioration results for ACSR-OC conductors are examined, it is shown that corrosion may lead to the reduction of the effective cross section area of conductors is proposed. The measurement system consisting of a constant current source with a RF frequency, a signal processing unit and a motor driver/ controller is designed and implemented. This instrument has such capabilities as detecting the sensor output and estimating diameter change of the testing conductors, continuously. As a result, it was verified that such corrosion detector system with an eddy current sensor can be shown good effectiveness for estimating the serious faults due to deterioration in overhead distribution lines and giving an early warming before severe aged conductor may lead to fail.

  • PDF

The SAG Behavior of Overhead Conductor due to Forest Fire (산불에 의해 가열된 가공송전선의 이도거동)

  • Kim, Byung-Geol;Kim, Shang-Shu;Jun, Wan-Gi;Han, Se-Won;Kim, Jin-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.516-517
    • /
    • 2007
  • Because forest fire can give a serious damage to overhead conductors, the thorough understanding about sag behavior of burned conductor is very important in maintaining the transmission line safely. Therefore, a systematic investigation was carried out by heating method. As the heating temperature increases, drastic change of tensile strength of Al wire due to the softening of Al wire occurred. When Al wire is exposed to the flame(about $800^{\circ}C$) during only 13 seconds, the remained tensile strength of Al wire showed under 90%. and then sag of overhead conductor become deteriorated. The detailed results will be given in the text.

  • PDF

The Study of Short term Current in ACSR (가공송전선의 단시간 정격전류 설정연구)

  • Kim, Byung-Geol;Kim, Shang-Shu;Ahn, Sang-Hyun;Sohn, Hong-Kwan;Park, In-Pyo;Jang, Tae-In;Lee, Dong-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.45-46
    • /
    • 2007
  • One of the major problems faced by the overhead conductor engineer is in the estimation of the loss in strength of conductors caused by long and short term exposures over a period years to elevated temperature. From the standpoint that the life of conductor is influnced by softening of Al wire, the life assessment of conductor was carried out. The aluminum components will be affected most in majority of conductors. The steel core if present will not be affected by temperatures below $225^{\circ}C$. The detailed description will be presented in the text.

  • PDF

The Changes of Conductor Temperature by Current and Environment Component of Wind Velocity and Ambient Temperature (환경 인자(풍속, 외기온도)와 전류량이 전선온도에 미치는 영향)

  • Kim, Shang-Shu;Kim, Byung-Geol;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il;Min, Byung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.631-632
    • /
    • 2005
  • 대부분의 고압송전선은 알루미늄도체와 강심코어로 구성된 ACSR(Aluminum Conductor Steel Reinforced) 계통으로 건설되었다. 강심코어는 고탄소강으로 전선의 하중을 담당하며 알루미늄은 도체로 사용되고 있다. ACSR $410mm^2$ 가공송전의 온도와 전류량, 외기조건(온도, 풍속, 풍향각)과의 관계를 규명하는 것은 송전용량과 승전효율을 증진하는데 필수적이다. 전선온도는 전류량에 따라 직선적으로 변화하며 풍속 0.5 m/s와 태양열의 흡수가 없다고 가정하면 "전선온도($^{\circ}C$) = -0.3143 + 0.077$\times$전류랑(A)"의 관계를 가진다. 전류랑 852A에서 풍속에 따라 전선의 표면부와 강심부의 망사온도차는 감소하였다. 풍속 20m/s에서의 방사온도차는 약 $1.4^{\circ}C$로 나타났다.

  • PDF

The Effect of Heat Exposure on Fatigue Properties of INVAR Steel Core for STACIR/AW Conductor (증용량저이도송전선(STACIR/AW)용 인바강선의 피로특성에 미치는 경년열화의 효과)

  • Kim, Shang-Shu;Kim, Byung-Geol;Park, Su-Dong;Lee, Hee-Woong;Sin, Goo-Yong;Lee, Dong-Il;Min, Byung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1274-1277
    • /
    • 2004
  • 최근 에너지 소비구조의 선진화에 따라 전력수요는 매년 10%이상 증가하고 있지만 철탑부지확보 및 환경 문제 둥에 의해 신규 송전선의 건설은 점차 어려워지고 있다. 이에 대한 대책으로 철탑의 교체 없이 송전선의 전류용량간 증가시키는 방안이 우선적으로 고려되어 적용되고 있다. 이미 국내에서도 기존 송전선인 ACSR 전선을 중용량 저이도의 특성을 가진 STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced)송전선으로 교체하여 전력 수송량을 증가시키고 있다. STACIR/AW전선은 도체의 내열성을 향상시켜 연속허용온도$(210^{\circ}C)$를 높임으로 전류용량을 증가시키고, ACSR에 사용되는 강심재료인 고탄소강선을 선팽창계수가 낮은 인바강선(INVAR)으로 대체함으로 고온환경에 따른 이도증가를 방지하고 있다. 그러나 STACIR/AW 송전선은 ACSR 송전선에 비하여 연속허용온도가 높고 경간의 거리가 멀기 때문에 열화에 의한 피로특성의 변화 가능성이 높다. 따라서 본 연구에서는 증용량저이도전선의 강심소재인 INVAR/AW강선을 소정의 온도에서 경년 열화하고, 열화시간에 따른 강도와 피로특성의 변화를 조사하여, STACIR/AW전선의 안정적 운전을 위한 재료물성적 관리인자를 도출하고자 하였다.

  • PDF

Surface and Component Analysis of Deteriorated ACSR due to a Flame (화염에 열화된 강심알루미늄연선의 표면 및 성분분석)

  • Kim, Young-Dal;Shim, Jae-Myung;Park, Keun-Seok;Jeong, Yun-Mi;Kim, Jae-Kwang;Byun, Jeong-Seop;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1966-1971
    • /
    • 2011
  • Generally, the characteristics of the conductor that was affected by forest fire can be analyzed only when the forest fire is accurately modeled and its effect is identified. Few studies have been conducted with a forest fire model for transmission lines, and no results of the examination of the actual test specimens that were exposed to forest fire have been reported. As the deterioration characteristics of a forest fire are difficult to analyze in the actual field, an environment that was similar to that in the field was used in this study. Deterioration was deposited on a wire using an artificial flame experiment device, to analysis the temperature, surface and component characteristics. It seems that this analysis data in this study can be used as the basic data for the database that can be utilized to analyze wires exposed to forest fire and deterioration and to predict the ACSR wire refurnishment life.

The Mechanical and Electrical property changes of Overhead Conductor due to Forest Fire and Agents (산불과 소화약제에 노출된 가공송전선의 기계적 및 전기적 특성 변화)

  • Jang, Young-Ho;Kim, Byung-Geol;Kim, Shang-Shu;Han, Se-Won;Kim, Jin-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.459-460
    • /
    • 2008
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Oxidation of overhead conductor was increased with temperature and time(maximum time : 30min). Conductivity of Al conductor was decreased by Agents. The detailed will be given in the text.

  • PDF

Mechanical and Electrical Properties Behavior Study of Overhead Conductor due to Forest Fire (산불에 노출된 가공송전선의 기계적 및 전기적 특성 거동 연구)

  • Jang, Young-Ho;Kim, Byung-Geol;Kim, Shang-Shu;Han, Se-Won;Kim, Jin-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.108-109
    • /
    • 2008
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Especially, this paper describes the changes of mechanical and electrical properties of flame exposed conductor. The detailed will be given in the text.

  • PDF