• Title/Summary/Keyword: ACI model

Search Result 229, Processing Time 0.028 seconds

Evaluation of Ultimate Strength of Reinforced Concrete Deep Beams Using Grid Strut-Tie Model Approach (격자 스트럿-타이 모델 방법을 이용한 철근콘크리트 깊은 보의 극한강도 평가)

  • Kim, Byung-Hun;Lee, Won-Seok;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.179-182
    • /
    • 2005
  • Recently, many design codes including ACI 318-02 recommend the use of a strut-tie model approach for design of structural concrete with D-region(s). However, there are several unclear problems and shortcomings in the codes' strut-tie model approach. A grid strut-tie model approach was proposed to resolve these problems. In this study, the ultimate strengths of 17 deep beams, the most familiar type of D-regions, were evaluated for the validity check of the grid strut-tie model approach. The analytical results obtained by the approach are compared with those by the strut-tie model approach presented by CEB-FIP, AASHTO LRFD, and ACI 318-02.

  • PDF

Shear Strength of Concrete Deep Beam Reinforced AFRP rebar (AFRP rebar로 보강된 콘크리트 깊은보의 전단강도)

  • Lee, Young-Hak;Kim, Min-Sook;Cho, Jang-Se;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • This study carried out a shear experiment on concrete deep beam reinforced AFRP to investigate the shear strength of deep beam. The test was conducted on 8 specimens, and the variables were shear span ratio, reinforcement ratio, effective depth, and rebar type. We compared shear strength using ACI 318-08 STM with proposed equations that considered arching action according to shear span ratio. As a result, it was found that shear strength of deep beam reinforced AFRP rebar presented higher shear strength than steel rebar. ACI STM's predictions are more accurate than other predicting equations, and thus this research proposed model versus effective compressive strength of the concrete strut that considered strut size effect based on test results. The predictions obtained using the proposed model are in better agreement than previous equations and codes.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

Evaluations of the Maximum Shear Reinforcement of Reinforced Concrete Beams (철근콘크리트 보의 최대 전단철근비에 대한 평가)

  • Hwang, Hyun-Bok;Moon, Cho-Hwa;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.719-727
    • /
    • 2009
  • The requirements of the maximum shear reinforcement in the EC2-02 and CSA-04, which are developed based on the truss model, are quite different to those in the ACI-08 code and AIJ-99 code, which are empirical equations. The ACI 318-08, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take the influence of the concrete compressive strength into account. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-08. Ten RC beams having various shear reinforcement ratios were tested and their corresponding shear stress-shear strain curves and failure modes were compared to the predicted ones obtained by the current design codes.

A Study for the Long Term Behavior of Steel-Concrete Composite Structures (합성구조물의 장기거동에 관한 연구)

  • 김진근;어석홍;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.325-330
    • /
    • 1994
  • In this study, analytical methods for predicting the long term behavior of steel-concrete composite structures due to creep and shrinkage of concrete are investigated. For structural analysis considering long term behavior, the results are much dependent6 on the predictive models for creep and shrinkage of concrete which are ACI model, CEB-FIP model and BP model and the methods for the time analysis of structures which are AEMM, RCM and IDM. To demonstrate the validity of the program which was developed for this study, a steel-concrete composite column subjected to constant axial deformation was tested, and the experimental results wewe compared with analytical results. It was found that stresses are redistributed between concrete and wide flange steel, and analytical results by ACI model and IDM well predict the experimental data.

  • PDF

Modified Equivalent Frame Models for Flat Plate slabs Under Lateral Load (수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델)

  • Park Young Mi;Cho Kyung Hyun;Han Sang Whan;Lee Li Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.272-275
    • /
    • 2004
  • This study is to propose a modified equivalent frame method under lateral loading. ACI 318-02 allows the equivalent frame method to conduct slab analysis subjected to lateral loads. However, current method can not predict the behavior of the slabs particularly under lateral loading because the equivalent frame method in the ACI 318 has been developed against gravity loads. This study provides more precise model for the analysis of the flat plate slabs under lateral loading. The model reflect the force transfer mechanism of slabs, column and torsional member more accurately than the existing model. The accuracy of this model is verified by compared with finite element method analysis results.

  • PDF

Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion (고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석)

  • Han, Sam-Heui;Kim, Jong-Gil;Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • The ultimate behavior of high-strength concrete beams is studied with respect to their strength. Thirteen beams were analyzed and the results are presented herein. The variable parameters were the concrete's compressive strength, from 57 to 184 MPa and the amount of lateral torsional reinforcement, from 0.35 to 1.49%. The ultimate torsional strengths from tests were compared with those by this proposed theory and by the ACI code. As a consequence, The ultimate torsional strengths by this proposed theory show the better results than those by the ACI code.

Strength Prediction of RC Beams Subjected to Pure Torsions Using 3-D Strut-Tie Models (3차원 스트럿-타이 모델을 이용한 순수 비틀림을 받는 보의 강도예측)

  • 박정웅;윤영묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.409-412
    • /
    • 2003
  • ACI design code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the reinforced concrete beams. In this study, the failure strengths of the ten reinforced concrete beams subjected to pure torsion were evaluated using 3-dimensional strut-tie models. The analysis results obtained from the present study were compared with those obtained from the ACI design code. The comparison showed that the accuracy and performance of the present method were better than the ACI design code. Thus, the method implementing a 3-dimensional strut-tie model can be possibly applied to the analysis and design of the reinforced concrete beams subjected to pure torsion as a rational design method.

  • PDF

Shear Deformation Characteristics of Concrete Beams Strengthened with Steel/FRP Bar (철근 및 FRP Bar 콘크리트보의 전단변형 특성)

  • Shin, Geun-Ok;Rhee, Chang-Shin;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.277-280
    • /
    • 2006
  • This paper deals with the shear deformation charateristics of concrete beams strengthened with steel/FRP Bar. Applying the shear behavioral model based on shear deformation compatibility to RC beams tested by Ahmed K. El-Sayed et al.(2006), their transverse deformation in the web are calculated at ultimated loads after decoupling the shear carried by arch action in each beams. The calculated transverse deformation at ultimated loads are nearly same for the different reinforcement ratio. From these results, the temporary transverse deformation limit criterion is deduced. Using the proposed temporary limit criterion, the shear strength of concrete beams strengthen with FRP Bar tested by Ahmed K. El-Sayed et al.(2006) is predicted. These predicted values are compared with the measured values and the results are also compared with the current ACI and JSCE equation. The proposed method predicts the ultimate shear capacities more accurately than the equation of ACI and JSCE code. The predictions by the ACI and JSCE code are founded to be very conservative.

  • PDF

A Modified Equivalent Frame Model for Flat Plate Slabs Under Combined Lateral and Gravity Loads (조합하중시의 플랫 플레이트 슬래브 시스템에 대한 수정된 등가골조 모델)

  • Oh, Seung-Yong;Park, Young-Mi;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.369-372
    • /
    • 2006
  • Flat plate slab systems have been commonly used as a gravity force resisting systems, which should be constructed with lateral force resisting systems such as shear walls and moment resisting frame. ACI 318(2005) allows the Direct design method, the equivalent frame method (ACI-EFM) under gravity loads and the finite-element models, effective beam width models and equivalent frame models under lateral loads. ACI-EFM can be used for gravity loads as well as lateral loads analysis. But the method may not predict the behavior of flat plate slabs under lateral loads. Thus Previous study developed a Modified equivalent frame method(Modified-EFM) which could give more precise answer for flat plate slab under lateral loads. This study is to verified the accuracy of a Modified-EFM under combined lateral and gravity loads. The accuracy of this model is verified by comparing the results using the Modified-EFM with the results of finite element analysis. For this purpose, 7 story building is considered. The analysis results of other existing models are included. The analysis results show that Modified-EFM produces comparable drift and slab internal moments with those obtained from finite element analysis.

  • PDF