• Title/Summary/Keyword: ACE format library

Search Result 4, Processing Time 0.015 seconds

Current Status of ACE Format Libraries for MCNP at Nuclear Data Center of KAERI

  • Kim, Do Heon;Gil, Choong-Sup;Lee, Young-Ouk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.191-195
    • /
    • 2016
  • Background: The current status of ACE format MCNP/MCNPX libraries by NDC of KAERI is presented with a short description of each library. Materials and Methods: Validation calculations with recent nuclear data evaluations ENDF/BV-II. 0, ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0 have been carried out by the MCNP5 code for 119 criticality benchmark problems taken from the expanded criticality validation suite supplied by LANL. The overall performances of the ACE format KN-libraries have been analyzed in comparison with the results calculated with the ENDF/B-VII.0-based ENDF70 library of LANL. Results and Discussion: It was confirmed that the ENDF/B-VII.1-based KNE71 library showed better performances than the others by comparing the RMS errors and ${chi}^2$ values for five benchmark categories as well as whole benchmark problems. ENDF/B-VII.1 and JEFF-3.2 have a tendency to yield more reliable MCNP calculation results within certain confidence intervals regarding the total uncertainties for the $k_{eff}$ values. Conclusion: It is found that the adoption of the latest evaluated nuclear data might ensure better outcomes in various research and development areas.

An inter-comparison between ENDF/B-VIII.0-NECP-Atlas and ENDF/B-VIII.0-NJOY results for criticality safety benchmarks and benchmarks on the reactivity temperature coefficient

  • Kabach, Ouadie;Chetaine, Abdelouahed;Benchrif, Abdelfettah;Amsil, Hamid
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2445-2453
    • /
    • 2021
  • Since the nuclear data forms a vital component in reactor physics computations, the nuclear community needs processing codes as tools for translating the Evaluated Nuclear Data Files (ENDF) to simulate nuclear-related problems such as an ACE format that is used for MCNP. Errors, inaccuracies or discrepancies in library processing may lead to a calculation that disagrees with the experimentally measured benchmark. This paper provides an overview of the processing and preparation of ENDF/B-VIII.0 incident neutron data with NECP-Atlas and NJOY codes for implementation in the MCNP code. The resulting libraries are statistically inter-compared and tested by conducting benchmark calculations, as the mutualcomparison is a source of strong feedback for further improvements in processing procedures. The database of the benchmark experiments is based on a selection taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP handbook) and those proposed by Russell D. Mosteller. In general, there is quite good agreement between the NECP-Atlas1.2 and NJOY21(1.0.0.json) results with no substantial differences, if the correct input parameters are used.

Criticality benchmarking of ENDF/B-VIII.0 and JEFF-3.3 neutron data libraries with RMC code

  • Zheng, Lei;Huang, Shanfang;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1917-1925
    • /
    • 2020
  • New versions of ENDF/B and JEFF data libraries have been released during the past two years with significant updates in the neutron reaction sublibrary and the thermal neutron scattering sublibrary. In order to get a more comprehensive impression of the criticality quality of these two latest neutron data libraries, and to provide reference for the selection of the evaluated nuclear data libraries for the science and engineering applications of the Reactor Monte Carlo code RMC, the criticality benchmarking of the two latest neutron data libraries has been performed. RMC was employed as the computational tools, whose processing capability for the continuous representation ENDF/B-VIII.0 thermal neutron scattering laws was developed. The RMC criticality validation suite consisting of 116 benchmarks was established for the benchmarking work. The latest ACE format data libraries of the neutron reaction and the thermal neutron scattering laws for ENDF/B-VIII.0, ENDF/B-VII.1, and JEFF-3.3 were downloaded from the corresponding official sites. The ENDF/B-VII.0 data library was also employed to provide code-to-code validation for RMC. All the calculations for the four different data libraries were performed by using a parallel version of RMC, and all the calculated standard deviations are lower than 30pcm. Comprehensive analyses including the C/E values with uncertainties, the δk/σ values, and the metrics of χ2 and < |Δ| >, were conducted and presented. The calculated keff eigenvalues based on the four data libraries generally agree well with the benchmark evaluations for most cases. Among the 116 criticality benchmarks, the numbers of the calculated keff eigenvalues which agree with the benchmark evaluations within 3σ interval (with a confidence level of 99.6%) are 107, 109, 112, and 113 for ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0 and JEFF-3.3, respectively. The present results indicate that the ENDF/B-VIII.0 neutron data library has a better performance on average.

Analysis of the CREOLE experiment on the reactivity temperature coefficient of the UO2 light water moderated lattices using Monte Carlo transport calculations and ENDF/B-VII.1 nuclear data library

  • El Ouahdani, S.;Erradi, L.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Boulaich, Y.;Ahmed, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1120-1130
    • /
    • 2020
  • The CREOLE experiment performed In the EOLE critical facility located In the Nuclear Center of CADARACHE - CEA have allowed us to get interesting and complete experimental information on the temperature effects in the light water reactor lattices. To analyze these experiments with accuracy an elaborate calculation scheme using the Monte Carlo method implemented in the MCNP6.1 code and the ENDF/B-VII.1 cross section library has been developed. We have used the ENDF/B-VII.1 data provided with the MCNP6.1.1 version in ACE format and the Makxsf utility to handle the data in the specific temperatures not available in the MCNP6.1.1 original library. The main purpose of this analysis is the qualification of the ENDF/B-VII.1 nuclear data for the prediction of the Reactivity Temperature Coefficient while ensuring the ability of the MCNP6.1 system to model such a complex experiment as CREOLE. We have analyzed the case of UO2 lattice with 1166 ppm of boron in ordinary water moderator in specified temperatures. A detailed comparison of the calculated effective multiplication factors with the reference ones [1] in room temperature presented in this work shows a good agreement demonstrating the validation of our 3D calculation model. The discrepancies between calculations and the differential measurements of the Reactivity Temperature Coefficient for the analyzed configuration are relatively small: the maximum discrepancy doesn't exceed 1,1 pcm/℃. In addition to the analysis of direct differential measurements of the reactivity temperature coefficient performed in the poisoned UO2 lattice configuration, we have also analyzed integral measurements in UO2 clean lattice configuration using equivalency of the integral temperature reactivity worth with the driver core fuel reactivity worth and soluble boron reactivity worth. In this case both of the ENDF/B-VII.1 and JENDL.4 libraries were used in our analysis and the obtained results are very similar.