• Title/Summary/Keyword: ACCELERATION

Search Result 7,248, Processing Time 0.034 seconds

Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge

  • Mei, D.P.
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The dynamic performance of railway bridges under high-speed trains draws the attention of bridge engineers. The vibration issue for long-span bridges under high-speed trains is still not well understood due to lack of validations through structural health monitoring (SHM) data. This paper investigates the correlation between bridge acceleration and train speed based on structural dynamics theory and SHM system from three foci. Firstly, the calculated formula of acceleration response under a series of moving load is deduced for the situation that train length is near the length of the bridge span, the correlation between train speed and acceleration amplitude is analyzed. Secondly, the correlation scatterplots of the speed-acceleration is presented and discussed based on the transverse and vertical acceleration response data of Dashengguan Yangtze River Bridge SHM system. Thirdly, the warning indexes of the bridge performance for correlation scatterplots of speed-acceleration are established. The main conclusions are: (1) The resonance between trains and the bridge is unlikely to happen for long-span bridge, but a multimodal correlation curve between train speed and acceleration amplitude exists after the resonance speed; (2) Based on SHM data, multimodal correlation scatterplots of speed-acceleration exist and they have similar trends with the calculated formula; (3) An envelope line of polylines can be used as early warning indicators of the changes of bridge performance due to the changes of slope of envelope line and peak speed of amplitude. This work also gives several suggestions which lay a foundation for the better design, maintenance and long-term monitoring of a long-span high-speed bridge.

Characteristics of Four SPE Classes According to Onset Timing and Proton Acceleration Patterns

  • Kim, Roksoon;Cho, Kyungsuk;Lee, Jeongwoo;Bong, Suchan;Park, Youngdeuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.63.3-64
    • /
    • 2015
  • In our previous work (Kim et al., 2015), we suggested a new classification scheme, which categorizes the SPEs into four groups based on association with flare or CME inferred from onset timings as well as proton acceleration patterns using multienergy observations. In this study, we have tried to find whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (>5000pfu) even if the associated flare and CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. For the former, the sites are very low (~1Rs) and close to the western limb, while the latter has a relatively higher and wider acceleration sites. (ii) When the proton acceleration starts from the higher energy, a SPE tends to be a relatively weak event (<1000pfu), in spite of its associated CME is relatively stronger than previous group. (iii) The SPEs categorized by the simultaneous proton acceleration in whole energy range within 10 minutes, tend to show the weakest proton flux in spite of strong related eruptions. Their acceleration heights are very close to the locations of type II radio bursts. Based on those results, we suggest that the different characteristics of the four groups are mainly due to the different mechanisms governing the acceleration pattern and interval, and different condition such as the acceleration location.

  • PDF

Guideline of Acceleration Length by Level of Service for Two Lane Entrance Ramp (2차선 유입연결로의 서비스 수준별 가속차선 길이 산정 기준)

  • 문대승;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.75-90
    • /
    • 1996
  • The objective of study is to examine relationship between traffic flow characteristics of two lane entrance terminal and acceleration length, and to suggest the acceleration length by level of service. The relationship between the speed ratio and the distance from the ramp appeared to be a quadratic concave from. In the case of two lane entrance ramp, the acceleration length is suggested as 1.4~2.0 times longer than the acceleration length of one lane entrance ramp. It is also recommended that acceleration length for two lane entrance ramp should be designed according to the level of service at the right most lane (level of service A : 1.4 B : 1.6 C : 1.8 D : 2.0 times of the one lane entrance ramp acceleration length) on freeway.

  • PDF

Suggested Accelerated Life Test Method of SMPS for Outdoor Lighting LED (실외조명 LED용 SMPS의 가속수명시험법 제안)

  • Lim, Seong-Yong;Hyong, Jae-Phill;Lim, Hong-Woo;Oh, Geun-Tae
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.8-19
    • /
    • 2018
  • Purpose: This study has developed the accelerated lifetime test method for smps for outdoor lighting LED through two factors of temperature and humidity. Methods: Acceleration condition was confirmed for each stress and model, and acceleration life test model was estimated according to acceleration condition. Results: As a result of confirming the accelerated life test model, in the case of humidity, acceleration was established only in the foreign products. Therefore, it is confirmed that the acceleration condition is insufficient. However, the estimated parameters for temperature are relatively constant. It is therefore suitable for power supply acceleration tests for outdoor lighting LEDs. Conclusion: The SMPS acceleration test for outdoor lighting LED can improve the availability of the product by developing an accelerated life test method that guarantees the reliability of the product.

Study of Human Perceptual Characteristics of Body Inclination Using a Tilt Bed

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.2-94
    • /
    • 2001
  • This paper investigates human discomfort response to the foot-to-head acceleration. During ambulance transport, a patient suffers from the foot-to-head acceleration, which might deteriorate his illness. To investigate the relationship between the ride discomfort and the foot-to-head acceleration, experiments were performed using a van type automobile similar to an ambulance. The experimental results show that head-ward acceleration is more uncomfortable than the foot-ward acceleration. For further investigation of the difference of ride discomfort caused by the direction of acceleration, two experiments were peformed using a tilt bed. In these experiments, foot-to-head acceleration is applied to the subjects by tilting the bed. Using a tilt bed, we investigated two things; relationship between discomfort and inclination of the bed ...

  • PDF

Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors (영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기)

  • Jung, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

Acceleration Behavior of Rock Slope by Shaking Table Test (진동대 실험을 이용한 암반비탈면의 가속도 특성)

  • Kang, Jong-Chul;Yoon, Won-Sub;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.841-848
    • /
    • 2021
  • This study investigated the acceleration characteristics of rock slopes when earthquakes, which have not been studied much in Korea, occur. The rock slope was modeled with a similar raw of 1/20 in consideration of the height(10m), roughness, strength, and the joint dips(20°). After the completion of the model, a shaking table tests was conducted according to the magnitude of the acceleration and the type of seismic wave. The maximum acceleration was greater in the short-period seismic wave than in the long-period seismic wave, and the maximum acceleration was larger in the small acceleration. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. In the event of an earthquake smaller than the domestic earthquake-resistant maximum design acceleration(0.154g), safety management of the rock slope was required.

Unrestricted Measurement Method of Three-dimensional Walking Distance Utilizing Body Acceleration and Terrestrial Magnetism

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.5-94
    • /
    • 2001
  • Unrestricted measurement method of three-dimensional walking distance utilizing body acceleration and terrestrial magnetism is discussed. The three-dimensional walking distance is derived by the integration of the three dimensional acceleration of foot during swing phase. Since the sensor system attached on the foot rotates during swing phase, the acceleration data measured on the foot include acceleration of gravity which causes inaccurate calculation of the velocity and the distance. Three gyros are used to compensate the rotation of the sensor system. Moreover, one geomagnetic sensor is employed to derive the heading direction of the subject Healthy volunteers performed ...

  • PDF

SEMI-ANALYTIC MODELS FOR ELECTRON ACCELERATION IN WEAK ICM SHOCKS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.3
    • /
    • pp.59-67
    • /
    • 2020
  • We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and re-acceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model. Considering the rather turbulent nature of shocks in the intracluster medium, such extreme dependence for the in situ acceleration might not be compatible with the relatively smooth surface brightness of observed radio relics.