• 제목/요약/키워드: ACCELERATION

검색결과 7,249건 처리시간 0.03초

Statistical study on the kinematic classification of CMEs from 4 to 30 solar radii

  • Jeo, Seong-Gyeong;Moon, Yong-Jae;Cho, Il-Hyun;Lee, Harim;Yi, Kangwoo
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.54.3-54.3
    • /
    • 2018
  • In this study, we perform a statistical investigation on the kinematic classication of 4264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups; deceleration, constant velocity, and acceleration motion. For this, we devise four dierent classication methods by acceleration, fractional speed variation, height contribution, and visual inspection. Our major results are as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed classied by the last three methods are consistent with one another. Fourth, according to the last three methods, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.

  • PDF

에어제트직기 주 노즐내 천음속 유동의 수치 해석적 연구 (A Numerical Analysis of Transonic Flows in an Axisymmetric Main Nozzle of Air-Jet Loom)

  • 오태훈;김상덕;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.168-173
    • /
    • 1998
  • A numerical analysis of axisymetric backward facing step main nozzle flow in air jet loom has been accomplished. To obtain basic design data for an optimum main nozzle for an air-jet loom and to predict the transonic/supersonic flow, a characteristic based upwind flux difference splitting compressible Navier-Stokes method has been used. The wall static pressure of the main nozzle and the flow velocity changes in the nozzle tube were analyzed by changing air tank pressures and acceleration tube lengths. The flow inside the nozzle experiences double choking one at the needle tip and the other at the acceleration tube exit at tank pressures over $4kg_f/cm^2$. The tank pressure $P_t$ leading to the critical condition depends on the acceleration tube length; i.e, $P_t$ is higher for longer acceleration tubes. The $P_t$ value required to bring the acceleration tube exit to the critical condition is nearly constant regardless of acceleration tube length. The round needle tip shape might lead to less total pressure loss when compared with step shape.

  • PDF

고속철도차량용 견인 인버터 커패시터의 가속수명 예측 (Acceleration Life Prediction of the Capacitor on a Traction Inverter for a High-Speed Train)

  • 맹희영;정시교
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.653-659
    • /
    • 2015
  • The aim of this study is to develop a technique for the accelerated life test of the capacitor in a propulsion control device of a traction inverter used for a high-speed train. Using this technique, the accelerated life test can possibly estimate the life cycle of a capacitor under various temperature conditions and irregularly applied voltage. The accelerated life test is conducted for the capacitor of the traction inverter. The common proceedings of this test are selection of failure mechanism, determination of accelerated stress, range determination of the accelerated stress, determination of the test condition, and distribution and determination of the sample. From this result, the continuous applied voltage was not considered for the acceleration factors anymore. Therefore, the final result having an acceleration factor of 9.4 (= 13,626/1,445) was observed. Furthermore, the life-shortening acceleration effect for the irregular applied voltage condition can be applied to various situations.

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.

NUMERICAL STUDIES OF COSMIC RAY ACCELERATION AT COSMIC SHOCKS

  • KANG HYESUNG
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2004
  • Shocks are ubiquitous in astrophysical environments and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration. It is believed that the CR pressure is important in the evolution of the interstellar medium of our galaxy and most of galactic CRs with energies up to ${\~}\;10^{15}$ eV are accelerated by supernova remnant shocks. In this contribution we have studied the CR acceleration at shocks through numerical simulation of 1D, quasi-parallel shocks for a wide range of shock Mach numbers and shock speeds. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies, and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number, and high Mach number shocks all evolve towards efficiencies ${\~}50\%$, regardless of the injection rate and upstream CR pressure. We conclude that the injection rates in strong quasi-parallel shocks are sufficient to lead to significant nonlinear modifications to the shock structures, implying the importance of the CR acceleration at astrophysical shocks.

SHOCK ACCELERATION MODEL WITH POSTSHOCK TURBULENCE FOR GIANT RADIO RELICS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제50권4호
    • /
    • pp.93-103
    • /
    • 2017
  • We explore the shock acceleration model for giant radio relics, in which relativistic electrons are accelerated via diffusive shock acceleration (DSA) by merger-driven shocks in the outskirts of galaxy clusters. In addition to DSA, turbulent acceleration by compressive MHD modes downstream of the shock are included as well as energy losses of postshock electrons due to Coulomb scattering, synchrotron emission, and inverse Compton scattering off the cosmic background radiation. Considering that only a small fraction of merging clusters host radio relics, we favor a reacceleration scenario in which radio relics are generated preferentially by shocks encountering the regions containing low-energy (${\gamma}_e{\leq}300$) cosmic ray electrons (CRe). We perform time-dependent DSA simulations of spherically expanding shocks with physical parameters relevant for the Sausage radio relic, and calculate the radio synchrotron emission from the accelerated CRe. We find that significant level of postshock turbulent acceleration is required in order to reproduce broad profiles of the observed radio flux densities of the Sausage relic. Moreover, the spectral curvature in the observed integrated radio spectrum can be explained, if the putative shock should have swept up and exited out of the preshock region of fossil CRe about 10 Myr ago.

가속도 주파수분석 방법을 이용한 스마트폰 기반 정적균형평가 (Smartphone Based Standing Balance Evaluation Using Frequency Domain Analysis of Acceleration)

  • 황지선;황선홍
    • 한국전문물리치료학회지
    • /
    • 제25권3호
    • /
    • pp.27-38
    • /
    • 2018
  • Background: At present time, smartphones have become very popular and powerful devices, and smartphone applications with the good validity have been designed to assess human balance ability. Objects: The purpose of this study is to evaluate the feasibility of smartphone acceleration in the assessment of postural control ability for six different conditions. Methods: Twenty healthy college-aged individuals volunteered. Static balance ability was measured twice with one-day interval using smartphone application and 3D motion capture system under the six different conditions. Results: Dominant frequencies for each test condition did not show significant differences except for two conditions. The intra-rater correlation coefficient between the first and second tests showed high correlations in six conditions(r>.70, p<.05). Smartphone acceleration and the acceleration calculated from the 3D marker position data showed high correlation coefficient(r>.80, p<.001). Conclusion: Acceleration recorded from a smartphone could be useful assessment variables for balance test in the clinical field.

국내 연안 카페리 차량 고박 장치 안전성에 관한 연구: 제I부 직접하중계산법을 이용한 선체 운동 가속도 산정 (Study on Structural Safety of Car Securing Equipment for Coastal Carferry: Part I Estimation of Hull Acceleration using Direct Load Approach)

  • 정준모;조희상;이경훈;이영우
    • 한국해양공학회지
    • /
    • 제30권6호
    • /
    • pp.440-450
    • /
    • 2016
  • The capsizing and consequent sinking of a coastal car ferry was recently reported, with numerous human casualties. The primary cause was determined to be a sudden turn with improperly stowed and secured cargo. Part I of this study introduces how long term acceleration components are determined from seakeeping analyses. A carferry with a displacement of 1,633 tonf was selected as the target vessel. Sea data that included the significant wave heights and periods were collected at four observation buoys, some of which were far away from two main voyage routes: Incheon-Jeju and Pusan-Jeju. Frequency response analyses were performed to obtain the linearized radiation force coefficients, hydrostatic stiffnesses, and wave excitation forces. Time response analyses were sequentially performed to produce the motion-induced acceleration processes. The probabilistic distributions of the acceleration components were determined using a peak and valley counting method. Long term extreme acceleration components were proposed as a final result.

PCN-PZT 압전형 가속도센서의 특성에 관한 연구 (A Study on the Characteristics of PCN-PZT Piezoelectric Acceleration Sensor)

  • 김영덕;김광일;정우철;고재석
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.354-360
    • /
    • 1999
  • PCN-PZT piezoelectric acceleration sensors of annular shear mode voltage type were fabricated and their characteristics have been investigated. Field tests are also carried out. To avoid noise problems from the environmental conditions, acceleration sensors employed solid state micro-electronics for pre-amplifier. The calibration procedures based on the principle of the comparison method were adopted for investigating the characteristics of fabricated acceleration sensors. The voltage sensitivity and resonant frequency of fabricated acceleration sensors were 83mv/g, 23kHz, respectively. The lower and upper frequency limit were 4Hz and 9kHz, respectively. The variation of the voltage sensitivity showed 10% at $-406{\circ}C\; and\; 9%\; at\; 121^{\circ}C$ compared to that of reference temperature at $40^{\circ}C$.

  • PDF

딥러닝 기반 교량 손상추정을 위한 Generative Adversarial Network를 이용한 가속도 데이터 생성 모델 (Generative Model of Acceleration Data for Deep Learning-based Damage Detection for Bridges Using Generative Adversarial Network)

  • 이강혁;신도형
    • 한국BIM학회 논문집
    • /
    • 제9권1호
    • /
    • pp.42-51
    • /
    • 2019
  • Maintenance of aging structures has attracted societal attention. Maintenance of the aging structure can be efficiently performed with a digital twin. In order to maintain the structure based on the digital twin, it is required to accurately detect the damage of the structure. Meanwhile, deep learning-based damage detection approaches have shown good performance for detecting damage of structures. However, in order to develop such deep learning-based damage detection approaches, it is necessary to use a large number of data before and after damage, but there is a problem that the amount of data before and after the damage is unbalanced in reality. In order to solve this problem, this study proposed a method based on Generative adversarial network, one of Generative Model, for generating acceleration data usually used for damage detection approaches. As results, it is confirmed that the acceleration data generated by the GAN has a very similar pattern to the acceleration generated by the simulation with structural analysis software. These results show that not only the pattern of the macroscopic data but also the frequency domain of the acceleration data can be reproduced. Therefore, these findings show that the GAN model can analyze complex acceleration data on its own, and it is thought that this data can help training of the deep learning-based damage detection approaches.