• Title/Summary/Keyword: ACC oxidase

Search Result 37, Processing Time 0.029 seconds

Biochemical Characterization of 1-Aminocyclopropane-1-Carboxylate Oxidase in Mung Bean Hypocotyls

  • Jin, Eon-Seon;Lee, Jae-Hyeok;Kim, Woo-Taek
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The final step in ethylene biosynthesis is catalyzed by the enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase. ACC oxidase was extracted from mung bean hypocotyls and its biochemical characteristics were determined. In vitro ACC oxidase activity required ascorbate and $Fe^{2+}$, and was enhanced by sodium bicarbonate. Maximum specific activity (approximately 20 nl ethylene $h^{-1}$ mg $protein^{-1}$) was obtained in an assay medium containing 100 mM MOPS (pH 7.5), $25\;{\mu}M$ $FeSO_4$, 6 mM sodium ascorbate, 1 mM ACC, 5 mM sodium bicarbonate and 10% glycerol. The apparent $K_m$ for ACC was $80{\pm}3\;{\mu}M$. Pretreating mung bean hypocotyls with ethylene increased in vitro ACC oxidase activity twofold. ACC oxidase activity was strongly inhibited by metal ions such as $Co^{2+}$, $Cu^{2+}$, $Zn^{2+}$, and $Mn^{2+}$, and by salicylic acid. Inactivation of ACC oxidase by salicylic acid could be overcome by increasing the $Fe^{2+}$ concentration of the assay medium. The possible mode of inhibition of ACC oxidase activity by salicylic acid is discussed.

  • PDF

Effect of Methyl Jasmonate on Ethylene Production in Mungbean Hypocotyls and Leaf Segments (녹두 하배축과 잎에서의 에틸렌 생성에 대한 Methyl Jasmonate의 효과)

  • 이규승
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Effects of methyl jasmonate (MeJA) on ethylene production in mungbean (Phaseolus radiatus L.) hypocotyl and leaf segments were studied. Ethylene production in mungbean hypocotyl segments was decreased in proportion to MeJA concentrations and $450\;\mu\textrm{M}$ of MeJA showed 50% inhibitory effect. This inhibitory effect appeared after 3 h of incubation period and continued for 24 h. Inhibition of ethylene production by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity. However, MeJA treatment had no effect on ACC content and ACC synthase activity. MeJA also inhibited auxin-induced ethylene production in hypocotyls. To investigate the mechanisms of the inhibitory effect of MeJA on the auxin-induced ethylene production, ACC synthase and ACC oxidase activity were examined after MeJA treatment. MeJA decreased the ACC content and ACC synthase activity as weD as ACC oxidase activity in the auxin-treated tissue. These results suggest that the inhibition of MeJA on auxin-induced ethylene production is not due to the direct inhibitory effect of MeJA on the ACC synthase, but to the inhibition of the ability of IAA to promote the synthesis of ACC synthase. In contrast, ethylene production from the detached mungbean leaves was stimulated by MeJA. The rate of ethylene production increased approximately 65% over the control after 12 h of incubation period by $4.5\;\mu\textrm{M}$ MeJA. When MeJA was applied to detached leaves along with IAA, the effect of MeJA appeared to be additive. In an effort to elucidate mechanisms of MeJA action on auxin-induced ethylene production in the leaf tissue, enzyme activities of ACC synthase and ACC oxidase were examined. MeJA stimulated ACC oxidase activity but did not affect ACC synthase activity in leaf tissue. Together, these results suggest that MeJA plays different roles in the ethylene production in the different mungbean tissues.issues.

  • PDF

Effects of Methyl Jasmonate on Ethylene Producton in Tomato (Lycopersicon esculentum Mill.) Hypocotyl Segments and Fruits (Methyl jasmonate가 토마토(Lycopersicon esculentum Mill.)하배축 절편과 열매에서 에틸렌 생성에 미치는 영향)

  • June Seung Lee
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 1995
  • Effects of methyl jasmonate (MeJA) on ethylene production in tomato(Lycopersicon esculentum Mill.) hypocotyl segments and fruits were studied. Ethylene production in tomato hypocotyl segments was inhibited by the increasing concentratons of MeJA, and 450 $\mu$M of MeJA showed 50% inhibitory effect. Time course data indicate that this inhibitory effect of MeJA appeared after 3 h of incubation period and continued until 24 h. Inhibition of ethylene producton by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid(ACC) synthase activity. However, MeJA treatment had no effect on ACC oxidase activity and the accumulaton of ACC oxidase mRNAs. MeJA also inhibited auxin-induced ethylene production by decreasing in ACC synthase activity. In contrast, MeJA stimulated ethylene production in tomato fruits. When 30 $\mu$L/mL MeJA was treated in a gaseous state, ethylene production doubled and this stimulating effect continued until 4 days. To investigate the mechanisms of MeJA on ethylene production, ACC synthase and ACC oxidase activities were examined after MeJA treatment. MeJA increased the activities of both ACC synthase and ACC oxidase, and induced ACC oxidase mRNA accumulation. These data suggest that MeJA plays distinct roles in the ethylene production in different tomato tissues. It is possible that MeJA affects differently the mechanisms of signal transuction leading to the ethylene biosynthesis.

  • PDF

Two Ethylene Signaling Pathways in Senescing Carnation Petals: Exogenous Ethylene-induced Expression of Genes for 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase and ACC Oxidase is Different from That of the Gene for Cysteine Proteinase

  • Satoh, Shigeru;Kosugi, Yusuke;Iwazaki, Yujiro;Shibuya, Kenichi;Waki, Keisuke
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.83-87
    • /
    • 2000
  • Carnation petals exhibit autocatalytic ethylene production and wilting during senescence. The autocatalytic ethylene production is induced by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes, whereas the wilting of petals is related to expression of the cysteine proteinase (CP) gene. Until recently, it has been believed that these two phenomena, autocatalytic ethylene production and wilting, are regulated in concert in senescing carnation petals, since the two phenomena occurred closely in parallel. Our studies with petals of a transgenic carnation harboring a sense ACC oxidase transgene and petals of carnation flowers treated with 1,1-dimethyl-4-(phenylsulfonyl) semicarbazide showed that the expression of ACC synthase and ACC oxidase genes and that of CP are regulated differently in carnation psanetals. Interestingly, in the petals of transgenic carnation, the transcript for CP was accumulated but the transcripts for ACC synthase and ACC oxidase were not accumulated in response to exogenous ethylene. Based on these results, we hypothesized that two ethylene signaling pathways, one leading to the expression of ACC synthase and ACC oxidase genes and the other leading to the expression of CP gene, are functioning in senescing carnation petals.

  • PDF

Molecular Cloning of a cDNA Encoding Novel Tomato ACC Oxidase Using RT-PCR

  • Yang, Suk-Jin;Hahn, Kyu-Woong
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.72-75
    • /
    • 1999
  • Using RT-PCR, a cDNA encoding tomato (Lycopersicon esculentum) ACC oxidase has partially been cloned, sequenced and identified. The nucleotide suquence of the clone was in the coding region and shared about 80% of homology iwht the other ACC oxidase genes of tomato, and 70∼84% with those of other plants such as Oryza sativa, Nicotiana tabacum and Helianthus annuus. In the wounded tomato leaves, this nucleotide transcripts were accumulated rapidly and declined slowly thereafter. These results suggested that the predicted clone might be another member of tomato ACC oxidase gene family.

Arabidopsis thaliana의 Ethylene Triple Response Mutant에서 에틸렌 생합성 과정의 생리 생화학적 특성

  • 이준승
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.31-40
    • /
    • 1996
  • The physiological and biochemical characterizations of the ethylene-related mutants in Arabidopsis thaliana - ethylene overproducing mutant (eto1-l) and ethylene insensitive mutants (etrl-3, ein2-l) - were detailed in this studies. Two or three week.old mature rosette leaves (before bolting) were used as the plant materials. Ethylene productions of eto1-l, etrl-3, and ein2-l mutants were about 200%, 400%, and 450% compared to that of wild type, respectively. ACC synthase and ACC oxidase activities of eto1-l mutant were similar to those of wild type. ACC content and ACC N-malonyltransferase activity, however, were 4.5 times and 3 times higher than those of wild type, respectively. SAM synthetase activity increased by 50% in eto1-l mutant plant. These results indicated that the alteration in the eto1-l mutant occured before the step of the conversion of SAM to ACe. In etrl-3 and ein2-l mutants, ACC synthase activities increased, but ACC oxidase activities decreased. ACC content and ACC N-malonyltransfcrase activity were 2 times higher than those of wild type. SAM synthetase activity in etrl-3 is similar to those of wild type, while it increased by 73% in ein2-l. These results showed that the block in ethylene action affected the autoregulation of ethylene biosynthesis, so that ACC synthase activity was not autoinhibited and ACC oxidase activity was not auto stimulated by ethylene. When the leaf tissues were used for in vitro kinase assay, a cytosolic protein (approximately 36 kDa) was phosphorylated only in eto1-l and ein2-l mutants.utants.

  • PDF

Effects of Light on the Expression of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and Oxidase Genes in Mung Bean Hypocotyls

  • Song, Ju-Dong;Lee, Dong-Hee;Rhew, Tae-Hyong;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.189-193
    • /
    • 2003
  • The effects of light on the regulation of ethylene biosynthesis during development of mung bean seedlings were investigated by monitoring the differential expression of seven 1-aminocyclopropane-l-carboxylate (ACC) synthase and two ACC oxidase genes. Among them, only the expression of VR-ACS1, VR-ACS6, VR-ACS7, VR-ACO1 and VR-AC02 was observable in etiolated mung bean hypocotyls. When the seedlings were de-etiolated for 1 d under a light/dark cycle of 16 h/8 h, the expression of VR-ACS6, VR-ACS7 and VR-ACO2 was controlled negatively by light. The expression of VR-ACS1 showed a tendency to increase until 6 h after a dark-to-light transition and then decreased at 12 h. On the other hand, the expression of VR-ACO1 was mostly constitutive up to 12 h after the dark-to-light transition. The opening of hypocotyl hooks during de-etiolation in the light was stimulated by the inhibition of the action of endogenous ethylene in the presence of 1-MCP. These results suggest that the negative regulation of light on the expression of ACC synthase and ACC oxidase genes eventually results in the inhibition of ethylene production with an acceleration of the opening of apical hooks.

  • PDF