• Title/Summary/Keyword: ACADVL

Search Result 1, Processing Time 0.013 seconds

A Case of Late-onset Episodic Myopathic Form with Intermittent Rhabdomyolysis of Very-long-chain acyl-coenzyme A Dehydrogenase (VLCAD) Deficiency Diagnosed by Multigene Panel Sequencing (유전자패널 시퀀싱으로 진단된 성인형 very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) 결핍증 증례)

  • Sohn, Young Bae;Ahn, Sunhyun;Jang, Ja-Hyun;Lee, Sae-Mi
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.19 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (OMIM#201475) is an autosomal recessively inherited metabolic disorder of mitochondrial long-chain fatty acid oxidation. The clinical features of VLCAD deficiency is classified by three clinical forms according to the severity. Here, we report a case of later-onset episodic myopathic form of VLCAD deficiency whose diagnosis was confirmed by plasma acylcarnitine analysis and" multigene panel multigene panel sequencing. A 34-year old female patient visited genetics clinic for genetic evaluation for history of recurrent myopathy with intermittent rhabdomyolysis. She suffered first episode of rhabdomyolysis with acute renal failure requiring hemodialysis at twelve years old. After then, she suffered several times of recurrent rhabdomyolysis provoked by prolonged exercise or fasting. Physical and neurologic exam was normal. Serum AST/ALT and creatinine kinase (CK) levels were mildly elevated. However, according to her previous medical records, her AST/ALT, CK were highly elevated when she had rhabdomyolysis. In suspicion of fatty acid oxidation disorder, multigene panel sequencing and plasma acylcarnitine analysis were performed in non-fasting, asymptomatic condition for the differential diagnosis. Plasma acylcarnitine analysis revealed elevated levels of C14:1 ($1.453{\mu}mol/L$; reference, 0.044-0.285), and C14:2 ($0.323{\mu}mol/L$; 0.032-0.301) and upper normal level of C14 ($0.841{\mu}mol/L$; 0.065 -0.920). Two heterozygous mutation in ACADVL were detected by multigene panel sequencing and confirmed by Sanger sequencing: c.[1202G>A(;) 1349G>A] (p.[(Ser 401Asn)(;)(Arg450His)]). Diagnosis of VLCAD deficiency was confirmed and frequent meal with low-fat diet was educated for preventing acute metabolic derangement. Fatty acid oxidation disorders have diagnostic challenges due to their intermittent clinical and laboratorial presentations, especially in milder late-onset forms. We suggest that multigene panel sequencing could be a useful diagnostic tool for the genetically and clinically heterogeneous fatty acid oxidation disorders.

  • PDF