• 제목/요약/키워드: AC-SERVO motor

검색결과 183건 처리시간 0.043초

뉴로-퍼지 제어기를 이용한 교류 서보 전동기의 속도제어 (Speed control of AC Servo Motor with Neuro-Fuzzy Controller)

  • 김종현;김상훈;고봉운;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2018-2020
    • /
    • 2001
  • In this study, a Neuro-Fuzzy Controller which has the characteristic of Fuzzy control and Artificial Neural Network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to Fuzzy rules are created by an expert. To adapt the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in the Neuro-Fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of an algorithm designed above, an operating characteristic of a AC servo motor is investigated.

  • PDF

스핀들용 유도 전동기 고성능 속도 및 위치 제어기 (High performance velocity and position controller for spindle motor)

  • 임충혁;유준혁;김동일;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.648-651
    • /
    • 1996
  • Samsung Electronics has developed high performance velocity and position controller for induction motors, and succeeded in mass production for the first time in Korea. Dynamic performance and final control accuracy of the controller are equivalent to those of AC servo motor controller. At present, we adopted the controller as spindle motor drive for Samsung CNC systems, and expect its wide use in industry as general purpose velocity and position controller for induction motor.

  • PDF

스핀들용 유도 전동기 고성능 속도 및 위치 제어기 (High Performance Velocity and position Controller for Spindle Motor)

  • 유준혁
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.11-14
    • /
    • 1996
  • Samsung Electronics has developed high performance velocity and position controller for induction motors and succeeded in mass production for first time in Lorea. Dynamic performance and final control accuracy of the controller are equivalent to those of AC servo motor controller. At present we adopted the controller as spindle motor drive for Samsung CNC systems and expect its wide use in industry as general purpose velocity and position controller for induction motor.

  • PDF

매트릭스 컨버터에 의한 AC 서보 영구자석형 동기전동기의 제어기 설계에 대한 고찰 : 속도제어기 (Study on Controller Design of AC Servo Permanent Magnet Synchronous Motor by Matrix Converter : Speed Controller)

  • 정충일;이상철;모동영;최창영;김태웅;박귀근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.106-108
    • /
    • 2008
  • This paper deals with the design for speed controller to drive PMSM by matrix converter without DC-link circuit as the power conversion system of AC servo motor drive. To design the speed controller of PMSM drive, the closed-loop transfer function of speed controller is calculated and then the frequency-domain response characteristics are analyzed by bode plot using Matlab. Based on the results by bode plot, the speed control gains are determined. As the real effects of controller designed in the frequency-domain display in the time-domain, the performance of speed controller is confirmed by the step response of speed controller. The design examples are shown and its validity of the design method mentioned in the paper is verified through PSIM simulation.

  • PDF

가변구조 시스템을 이용한 브러시리스 서보모터의 위치제어 (Position Control of Brushless Servo Motor using Variable Structure System)

  • 조창희;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.10-14
    • /
    • 1990
  • Variable Structure System(VSS) la being extended to a new control system of ac servo machines for its merits of simple mechanism and robustness. This paper has studied about applying VSS to position control for brushless servo motor. But VSS has the chattering problem of control input. This chattering phenomenon cause acoustic noises, torque ripple and increase harmonics of the current. One of the useful way to eliminate this defect of VSS, linearlizing the switching function is discussed here. Though the conventional method of linearizing the switching function diminishes the chattering, it may degrade the robustness of the system. In this paper, new linearized switching function which shows robust performance to the parametric variation and reduces chattering simultaneously is introduced and assured by simulation.

  • PDF

2축 서보시스템을 위한 위치제어장치 설계 (Design of a Position Controller for Two Axis Servo System)

  • 장석호;김기택;김형중
    • 산업기술연구
    • /
    • 제11권
    • /
    • pp.115-124
    • /
    • 1991
  • In this study, we design a position controller for two axis servo system. The position controller performs numerical control(NC)to DC or AC servo motor or step motor, and also has a digital input/output sequence capability. The control program composed of position and sequence command, which is called channel, is programmed easily and user-interactively. And it is interpreted and the straight line and arc position command is interpolated. We develop the Z80 microprocessor based system and the software with assembly and C language, and also PC based graphic simulator for the debugging and educational purposes.

  • PDF

포물선 가감속 패턴을 가지는 정밀 펄스 모터 콘트롤러 칩의 설계 및 제작 (Design and Implementation of Parabolic Speed Pattern Generation Pulse Motor Control Chip)

  • 원종백;최성혁;김종은;박종식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.284-287
    • /
    • 2001
  • In this paper, we designed and implemented a precise pulse motor control chip that generates the parabolic speed pattern. This chip can control step motor[1], DC servo[2] and AC servo motors at high speed and precisely. It can reduce the mechanical vibration to the minimum at the change point of a degree of acceleration. Because the parabolic speed pattern has the continuous acceleration change. In this paper, we present the pulse generation algorithm and the parabolic pattern speed generation. We verify these algorithm using visual C++. We designed this chip with VHDL(Very High Speed Integrated Circuit Hardware Description Language) and executed a logic simulation and synthesis using Synopsys synthesis tool. We executed the pre-layout simulation and post-layout simulation with Verilog-XL simulation tool. This chip was produced with 100 pins, PQFP package by 0.35 um CMOS process and implemented by completely digital logic. We developed the hardware test board and test program using visual C++. We verify the performance of this chip by driving the servo motor and the function by GUI(Graphic User Interface) environment.

  • PDF

VHDL을 이용한 서보시스템의 공간벡터 변조부 설계 (Design of the Space Vector Modulation of Servo System using VHDL)

  • 황정원;박승엽
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.5-8
    • /
    • 2001
  • In this paper, we have space vector PWM(Pulse Width Modulation) circuits on the FPGA(Field Programmable Gate Arry) chip designed by VHDL(Very high speed integrated circuit Hardware Description Language). This circuit parts was required at controlling the AC servo motor system and should have been designed with many discrete digital logics. In the result of this study, peripheral circuits are to be simple and the designed logic terms are robust and precise. Because of it's easy verification and implementation, we could deduced that the customize FPGA chip show better performance than that of circuit modules parts constituted of discrete IC.

  • PDF

교류서보계의 궤환제어 구현 (Implementation of Feedback Controller on the Servo System)

  • 전삼석;박찬원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.719-720
    • /
    • 2006
  • In the mechanical system, optimization of motion control is very essential in the aspect of automation technique progress. In the servo system, the function of controller is very important but most of the controllers have played only the role of pulse generator because the controller with main function is very expensive. In this thesis, the system was composed of PC, commonly used driver AC servo motor and a produced control board. The PC transmit a gain, a locus data to a driver and controller. At the same time, it converts imformation from the controller and convert them into data and offer an output with graph. The role of a controller is to trasmit a locus data to a driver and counting the pulse on the phase of an encoder to the PC. We have performed the experiment in order to confirm with variable PID parameter capable of the optimization of gain tuning with the counting of feedback control sensor signal with regard to the external interface into the system, such as torque. Based on the experiment result, we have confirmed as follows: First, it was confirmed that we could easily input control factors P.I Gain, constant $K_P,\;K_I$ into PC. Second, not only pulse generator function was possible, but with this pulse it was also possible to count using software with PIC chip. And third, using the multi-purpose PIC micro chip, simple operation and the formation of small size AC Servo Controller was possible.

  • PDF

피드포워드적 수법에 근거한 유도전동기의 토크 속응제어계에 있어서 2차저항 동정법 (An Identification Method of Secondary Resistance Based on Quick Torque Control System of Induction Motors)

  • 정석권;양주호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.267-269
    • /
    • 1996
  • Servo systems became indispensable to applications such as industrial robots and numerically controlled machinery. Especially, induction motor drives are widely used as ac-servo system owing to the fact that it is maintenance-free. At the present time, Quick torque control methods such as vector control have been employed that enables an induction motor to attain as quick torque response as a dc motor. However, these methods can not be realized without knowing several motor parameters accurately, because the methods need them to calculate flux or voltage command. Most of all, secondary resistance has to be identified accurately, because it's value varies greatly for operation of induction motors. In this paper, a new identification method of secondary resistance based on quick torque control system of induction motors is proposed. The proposed method is derived theoretically from motor circuit equation and can be realized very simply by detecting primary current and voltage command of the motor. Through the numerical simulation considered using PWM inverter, the validity of the proposed method was successfully confirmed.

  • PDF