• Title/Summary/Keyword: AC loss measurement

Search Result 51, Processing Time 0.022 seconds

Total AC Loss by simultaneously applied AC transport current and AC external magnetic field in BSCCO Tape

  • Park Myungjin;Lim Hyoungwoo;Cha Gueesoo;Lee Jikwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.10-13
    • /
    • 2005
  • Transport current and magnetic field which is generated by transport current make AC current - AC mag-netic field condition(AC-AC condition) in AC power application system using HTS tape. Therefore, characteristics of AC loss under the AC-AC condition are necessary to estimate AC loss of power device with accuracy such as HTS transformer. In this paper, we researched transport current loss, magnetization loss by perpendicular magnetic field and total loss which is represented as summation of both losses under the AC-AC condition in single HTS tape. As a result, magnetization loss showed increasing behavior under 65mT and decreasing behavior upper 65mT by influence of transport current. Transport current loss was increased continuously through out whole measurement ranges in the AC-AC condition. Total loss in HTS tape was dominated entirely by magnetization loss.

Fabrication, AC Loss Measurement and Analysis of Bi-2223 Conductors with Respect to Various Twist Pitch (트위스트 피치를 고려한 Bi-2223 선재 제작과 AC 손실 측정 및 분석)

  • Jang, Mi-Hye;Chu, Yong;Lim, Jun-Hyung;Joo, Jin-Ho;Ko, Tae-Kuk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.589-595
    • /
    • 2000
  • In this papre, AC losses of Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist and different twist pitch(8, 10, 13, 30, 50, 70 mn). The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-probe method. And the AC loss measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the critical current is larger non-twist than twisted filament. And, the AC loss by Norris equation is higher non-twisted tape than 13mm twisted tape. Also, it is confirmed that of AC loss of tape having non-twist pitch larger than those having differnet twist pitch.

  • PDF

Influence of Tape's Critical Currents and Current Distributions on AC Loss Measurement in a Multi-tape Conductor (임계전류 및 전류분포가 다중테이프 초전도도체의 교류손실 측정에 미치는 영향)

  • Ryu Kyung Woo;Ma Y. H.;Choi Byoung Ju;Hwang S. D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2005
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables, which consist of a number of lli 2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. In this work we have prepared a multi-tape conductor composed of Bi-2223 tapes. The at losses of the conductor have experimentally investigated. The loss tests indicate that the effect of tapes critical currents on AC loss measurement in the multi tape conductor is negligible only if currents in the tapes flow uniformly Moreover, the measured tosses of the conductor are in good agreement with the sum of the transport losses in the tapes. However, in the case of non-uniform current distributions, the measured AC losses considerably depend on the current distribution parameter of the positioning of a voltage lead. Thus special cautions should be needed for the measurement of the true AC losses in the short power cable samples.

Measurement of AC Loss in SmBCO Coated Conductor (SmBCO Coated Conductor의 교류손실 측정)

  • Park, M.J.;Kim, W.S.;Lee, J.K.;Oh, S.S.;Ha, H.S.;Kim, H.S.;Ko, R.K.;Yoo, S.I.;Moon, S.H.;Choi, K.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.52-56
    • /
    • 2008
  • According to the improvement of HTS conductor, HTS tapes which have the high current capacity have been recently researched in several nations. For large power application, AC loss is the most important issue in the development of AC superconducting power devices because it is closely related to the system operation efficiency. In 1st generation wire of HTS conductor, BSCCO, AC loss is too large to use for power application. Also, It is well known in recently years that YBCO CC, the 2nd generation wire, has also too much AC loss to apply to AC power devices. There are many trials to develop the new HTS wire having the low AC loss around the world. In this research, we present the measurment result of magnetization losses in SmBCO coated conductors. We measured the magnetization loss generated by perpendicularly exposed external magnetic field and compared with the analytic value of the strip model. Also, we presented the results compared with measured magnetization loss of an YBCO coated conductor.

Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.204-210
    • /
    • 2005
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)

Effect of the voltage lead configurations on AC Loss Measurement in a Single Layer High-Tc Superconducting Model Cable (전압리드의 배치가 단층 고온초전도 모델케이블의 교류손실 측정에 미치는 영향)

  • 류경우;정재훈;황시돌;김석환
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.670-675
    • /
    • 2002
  • AC loss is an important issue in the design of high-T$_{c}$ superconducting Power cables. The cables consists of a number of Bi-2223 tapes wound on a former. In such cables tapes have different critical current characteristics intrinsically. And they are electrically connected to each other and current leads by soldering. These make loss measurements considerably complex, especially for short samples of laboratory size. Special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work the at losses in a single layer model cable have been experimentally investigated for different contacts and arrangements of voltage leads. The results show that the losses are not dependent on both arrangements and contact positions of the voltage leads. This implies that loss flux is only in a cylindrical conductor section. The measured losses also agree well with those based on a monoblock model and are independent of frequencies. This means that the measured AC loss of the model cable is purely hysteretic in nature.e.

Numerical Calculation of AC transport current loss of stacked BSCCO wires (수치해석을 이용한 BSCCO 적층 선재들에 교류 통전시 발생하는 손실 계산)

  • Lim, Hyoung-Woo;Han, Byung-Wook;Cha, Guee-Soo;Lee, Hee-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.56-58
    • /
    • 2007
  • AC transport current losses is an important factor in the development of superconducting tapes and superconducting power applications. In this paper we compared measurement, calculation and Norris equation of AC transport current loss in BSCCO single and multi stacked wire. And present a distribution flux density and current density in the HTS single wire and multi stacked wire. The result of Measurement and calculation of Ac transport current loss show that the same. And show that HTS characteristic of inside HTS wire.

  • PDF

Measurement & Analysis of Transport Current AC loss in Coated Conductor Bifilar Structure (Coated Conductor의 Bifilar 구조에서의 통전 교류 손실 측정 및 해석)

  • Bang, J.S.;Park, D.K.;Sim, K.D.;Jang, K.S.;Yang, S.E.;Ahn, M.C.;Kang, H.K.;Seok, B.Y.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.22-26
    • /
    • 2007
  • Superconductor is weak in AC condition. Bifilar geometry provides a solution to reduce AC loss. Bifialr geometry is piled up or wound with more than two layers. When a layer of superconductor abuts on other layers, AC loss is affected by not only self-field, but also magnetic field induced by adjacent layers. In this study, two superconductors are piled up as a series connection so that current flows in different directions. By this method, magnetic field is cancelled. If magnetic field is cancelled, AC loss is reduced. To compare AC loss with respect to piling method, we measured the AC loss difference between the case facing each other with substrate side and the case facing with YBCO side. Measured AC loss is compared with one-way current flow single layer AC loss. In addition, we analyzed how much AC loss was increased, or reduced. All results were compared with those calculated with Norris equation. By this experiment, we concluded that distance between two wires is the important cause of AC loss. The distance between two wires affects magnetic field reduction in YBCO and induced current flow on substrate side.

AC loss Measurement of Superconducting Power Cable (초전도 전력케이블의 교류손실 측정)

  • Hwang, Si-Dole;Hyun, Ok-Bae;Sohn, Song-Ho;Choi, Hyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.524-526
    • /
    • 2005
  • As a research activity of the project of "Verification Test of Superconducting Power Cable", we measured the AC loss of a short length superconducting power cable. The rating and the length of the cable were 22.9kV, 1,250A and 2.2m. The voltage taps for measuring the AC loss were attached to both ends of the conductor of the superconducting cable. Through the voltage taps and a lock-in amplifier we measured the in-phase component of the voltage($V_x$) with the load current(I). The AC loss was measured by multiplying the in-phase component of the voltage($V_x$) by the load current(I). The value of the AC loss of the superconducting power cable was 1.18W/m/phase/kA at 77.3K, 1atm.

  • PDF

Characteristics of AC loss of Hybrid Multi-Stacking with HTS Wires in External Magnetic Field (고온초전도 혼합적층선재의 외부자장 변화에 따른 손실 특설)

  • Lim, Hyoung-Woo;Lee, Dong-Min;Yun, Ki-Hyun;Cha, Guee-Soo;Lee, Hee-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.71-73
    • /
    • 2006
  • AC loss on variation of external magnetic field is a very important factor in development of power applications. In this paper, we measured and compared AC loss of hybrid-multi stacked wire made of the combination of 1G wires and 2G wires and uniform-multi-stacked wire made of one type of wires, 1G wires or 2G wires. Measurement was performed using by the linked-picked coil method. As results, as the number of wires increase, AC loss per unit volume of both stacked wires in low external magnetic field is reduced. Also AC loss of 2G slacked wire is higher than that of 1G wire. AC loss per unit length of 2G stacked wire is less than that of 1G stacked wire. And AC loss of hybrid-multi stacked wire made of the combination of 1G wires and 2G wires was between uniform-multi-stacked wire made of 1G wires and 2G wires.

  • PDF