• Title/Summary/Keyword: AC energy

Search Result 1,020, Processing Time 0.032 seconds

High Efficient Energy Recovery Circuit for AC Plasma Display Panel (AC Plasma Display Panel 구동 장치의 고효율 전력 회수 회로에 관한 연구)

  • 윤원식;강필순;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.481-488
    • /
    • 2001
  • The sustaining driver for color AC Plasma Display Panel should provide alternating high voltage pulses and recover the energy discharged from the intrinsic capacitance between the scanning and sustaining electrodes inside the panel In this paper a novel efficient energy recovery circuit employing boost-up function is proposed to achieve a faster rise-time and in order to obtain a stable sustain voltage The principle of operation. features simulated results and experiment results are illustrated and verified on a 7.5-inch-panel with 200[kHz]switch frequency.

  • PDF

A high energy radiation evaluation test of the 74AC04 Hex Inverter (고준위 감마방사선 환경에서의 원격계측을 통한 74AC04 의 내방사선 영향평가 및 분석)

  • Oh, Seung-Chan;Lee, Hyun-Jin;Lee, Nam-Ho;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1788_1789
    • /
    • 2009
  • 본 논문에서는 핵폭발과 같은 고준위방사선환경에서의 전자부품소자의 피해평가분석을 통하여 군용전자장비의 내방사선화를 하기 위한 기반기술의 확립을 위한 연구의 일환으로 74AC04(Inverter) IC에 대한 고준위감마선조사시험을 통하여 Co-60 Gamma-ray 선원을 사용하여 총 400Krad[si] 누적 선량에 대한 74AC04 소자의 동작특성 및 전기적 파라메터의 변화분석을 진행하였다. 시험평가 방법 및 절차는 MIL-STD-883G 1019.7[1] 및 ESA/SCC Basic Specification No.22900[2] 절차를 기준으로 하여 동일 lot에 대한 5개의 샘플을 이용하여 동작특성에 영향을 미치는 주요한 전기 적파라메터인 정지소비전류, 입력누설전류, VIL(Maximum Low Level Input Voltage)에 대한 변화추이를 분석하였다. 이번 조사시험을 통하여 입력게이트에서의 누적선량에 따른 TID(Total Ionizing Dose) 효과로 인한 VIL의 감소 추이를 확인 할 수 있었으며 총 누적선량 160Krad 이상에서의 VIL은 허용기준치이하로 감소하였고 정지소비전류의 경우 누적선량에 따른 점진적 증가 현상과 200Krad부근에서의 설계스펙허용치를 초과하는 결과를 확인하였다.

  • PDF

Effect of Scrap Content on the Impact Property and Fatigue Property of AC4A Alloy (AC4A 합금의 충격특성 및 피로특성에 미치는 스크랩 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.187-194
    • /
    • 2016
  • The effects of scrap content on the impact and fatigue properties were investigated in AC4A alloy. The impact absorbed energy of as-cast specimens were 3.61, 3.56, 3.47, and 3.08 Joules, respectively, when scrap contents of the specimens were 0, 20, 35, and 50%. And, the corresponding energy levels of the T6 heat-treated condition were 3.66, 3.48, 3.25, and 2.96 Joule. In the same way, the fatigue strength values of the as-cast specimens were 53.2, 52.0, 48.4, and 43.8MPa, respectively, and the corresponding fatigue strengths of the T6 heat-treatment specimens were 85.4, 75.7, 60.6, and 51.2 MPa. Impact absorbed energy and fatigue strength decreased as scrap content of the specimen increased. It is assumed that impact absorbed energy decreased owing to the presence of oxide films, which act as branches of 2nd cracks; fatigue strength also decreased with decreased deflection of the fatigue crack path as the scrap content of the specimens increased.

A Study On The Implementation Of Isolated Type Power Regenerative Converter (전원회생 절연형 컨버터의 실증을 위한 기본연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.507-511
    • /
    • 2019
  • The use of regenerative energy in AC drive systems has been an issue since the system became an industry standard in the 1990s. According to the quantity of the regenerative energy, the braking resistor in the case of low capacity was common. However the use of such low amount of energy is actively discussed, and the method of mounting the regenerative converter is becoming popular. In this paper, an isolated regenerative converter for reducing the circulating current which is mentioned as the biggest disadvantage of the conventional power regenerative converter system is proposed. In order to save energy, employing a power regenerative converter system for utilizing regenerative energy in an AC drive system is common. However due to the structure of the system, a circulating current is generated, which inevitably causes a decrease in efficiency. In this paper, an isolated regenerative power converter system is proposed to solve the circulating current and computer simulation to verify the possibility. The simulation results show that 20% of the circulating current of the conventional system does not appear in the proposed system, and the validity of the proposed system is confirmed.

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli

  • Lee, Jongchan;Heo, Lynn;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.673-680
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.

Band Gap Energy Engineering of Electron Emission Layer of ac-PDPs

  • Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.262-264
    • /
    • 2009
  • Ternary oxides with controlled band gap energy and reduced reactivity against moisture and carbon dioxide gas were designed and studied as a potential material for protective layer of ac-PDPs. The results showed a significant reduction in firing voltage and improved environmental stability.

  • PDF

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

Energy Regenerative 3-Phase Bidirectional AC-DC Converter for the Secondary Battery Charge/Discharge System (에너지 회수가 가능한 2차전지 충방전시스템용 3상 양방향 AC-DC 컨버터)

  • Lim, Seung-Beom;Won, Hwa-Young;Chae, Soo-Yong;Seo, Young-Min;Lee, Jun-Young;Ko, Jong-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.259-261
    • /
    • 2008
  • The electronic products such as laptop PC, cellular phone, robots and etc. need the DC power source. Recently, the secondary battery is frequently used as the portable DC power source and it needs forming process. In this paper, we proposed the bidirectional converter that the battery can be charged with high power factor and the discharged energy is regenerated into AC power source. In the charging mode, the converter acts as the boost rectifier. And the AC input current is controlled in phase with the AC input voltage. As a result, the power factor is improved nearly to unity. In the discharging mode, the DC power of battery wasted in resistor is regenerated to the AC bus line. Finally, the validity of the proposed bidirectional converter is verified by computer simulations and experimentation.

  • PDF