• Title/Summary/Keyword: AC energy

Search Result 1,024, Processing Time 0.032 seconds

High Frequency Link PCS for Interfacing with Power Utility System (고주파 링크 전력계통 연계형 PCS)

  • Kim, E.S.;Yoon, G.H.;Kang, S.I.;Cha, I.S.
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • Recently, new technologies of the PCS (Power Conditioning System) for energy generating using solar cells or fuel cell are required for smaller unit with low cost and high performance. In this paper, the proposed high frequency AC linked DC/AC converter which consisted of LLC resonant and LF cycloconverter is presented, described and verified through the experimental results of 1kW PCS.

  • PDF

Dynamic Resistance Characteristics of a Technical High-Tc Superconductor (실용 고온초전도체의 동저항 특성)

  • Ryu, K.;Choi, B.J.;Kim, H.J.;Seong, K.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1225-1227
    • /
    • 2005
  • A Bi-2223 tape has beer developed for power applications such as a fault current limiter, a power cable and a superconducting magnetic energy storage system. In such applications, the Bi-2223 tape carries time varying transport current and in addition experiences time varying external magnetic field. It is well known that the external magnetic field not only causes magnetization loss in the Bi-2223 tape, but also drastically increases transport loss due to a so-called "dynamic resistance". We developed an evaluation setup, which can measure transport loss in external at magnetic fields. Using this equipment, we measured the dynamic resistances for various amplitudes and frequencies of an external ac magnetic field perpendicular to the face in the tape. Simultaneously we investigated the effect of an external ac field on transport loss with different experimental conditions. This paper describes test results and discussions on correlation between the dynamic resistance and the transport loss for the Bi-2223 tape.

  • PDF

EMTP SIMULATION MODEL TO ANALYZE DYNAMIC INTERACTION BETWEEN STATCON AND TRANSMISSION SYSTEM (STATCON과 송전계통의 동적응동 분석을 위한 EMTP 시뮬레이션 모델)

  • Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.446-448
    • /
    • 1995
  • This paper dscribes a detail simulation model with EMTP (Electro-Magnetic Transients Program) which is very effective to analyze the interaction between the ac transmission line and STATCON (static condenser). The SATCON was represented by two voltage-source converters connected in parallel and sharing an energy storage dc capacitor bank. The voltage source converters was modeled with ideal gate turn-off switches. The power system was represented by a detail generator model and a distributed tramnsmission line model for detail performance analyses. Analysis results show that the conceived simulation model is very effective to analyze the interaction between the ac transmission line and STATCON, and to evaluate the performance of STATCON.

  • PDF

Oxygen Interstitial Defects and Ion Hopping Conduction of $X ThO_2 + (1-X) Gd_2O_3 $Solid Solutions: $O.O8{\le}X{\le}0.12$

  • Park, Sung-Ho;Kim, Yoo-Young;Kim, Keu-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.339-342
    • /
    • 1990
  • $Gd_2O_3-ThO_2$ solid solutions containing 8,10 and 12 mol % $ThO_2$ were synthesized with spectroscopically pure $Gd_2O_3,$ and $ThO_2$ polycrystalline powders. X-ray diffraction revealed that all synthesized specimens have the modified fluorite structure, and the lattice parameter of $Gd_2O_3$ is nearly unchanged with increasing $ThO_2$ mol %. Both ac and dc conductivities were measured in the temperature range $500-1100^{\circ}C$ under $Po_2's$ from $10^{-6}$ to $10^{-1}$ atm. The dc conductivities are nearly independent of $Po_2,$ and agree with the ac values. This implies that the solid solutions are ionic conductors. The conductivity increases with increasing $ThO_2$ mol % with an average activation energy of 1.23 eV. An oxygen interstitial defect and ionic hopping conduction are suggested.

Optimization of automatic power control of pulsed reactor IBR-2M in the presence of instability

  • Pepelyshev, Yu.N.;Davaasuren, Sumkhuu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2877-2882
    • /
    • 2022
  • The paper presents the main results of computational and experimental optimization of the automatic power control system (AC) of the IBR-2M pulsed reactor in the presence of a high level of oscillatory instability. Optimization of the parameters of the AC made it possible to significantly reduce the influence of random and deterministic oscillations of reactivity on the noise of the pulse energy, as well as to sharply reduce the manifestation of the oscillatory instability of the reactor. As a result, the safety and reliability of operation of the reactor has increased substantially.

Effects of hospital environment using health belief model in environmental management on preventive behaviors through responsiveness and health value (환경경영에서 건강신념모델을 이용한 병원환경이 대응성과 건강가치성을 통해 예방행동에 미치는 영향)

  • Jang, Googhyun;Hwang, Changyu;Song, Youngwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.231-257
    • /
    • 2016
  • Several efforts to replace the use of existing fossil energy resources have already been made around the world. As a result, a new industry of renewable energy has been created, and efficient energy distribution and storage has been promoted intensively. Among the newly explored renewable energy sources, the most widely used one is solar energy generation, which has a high market potential. An energy storage system (ESS) is a system as required. In this paper, the design and implementation of an ESS for the efficient use of power in stand-alone street lights is presented. In current ESS applied to stand-alone street lights, either 12V~24V DC (from solar power) or 110V~220V AC (from commercial power) is used to recharge power in systems with lithium batteries. In this study, an ESS that can support both solar power and commercial power was designed and implemented; it can also perform emergency recharge of portable devices from solar powered street lights. This system can maximize the scalability of ESSes using lithium batteries with efficient energy conversion, with the advantage of being an eco-friendly technology. In a ripple effect, it can also be applied to smart grids, electric vehicles, and new, renewable storage markets where energy storage technology is required.

Optimal Dispatch of Energy and Frequency Regulation Reserve Considering Contingency in a Competitive Electricity Market (경쟁적 전력시장에서 상정사고를 고려한 에너지와 주파수 제어예비력의 최적배분 기법)

  • Lee, Ki-Song;Jeong, Yun-Won;Shin, Joong-Rin;Chun, Yeong-Han;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.202-213
    • /
    • 2006
  • This paper presents a new approach for optimal dispatch of energy and frequency regulation reserve considering contingency in a competitive electricity market. It is necessary to introduce the reserve market with the spot energy market for operating efficiently and obtaining the security of the electricity market. However, the reserve market is closely connected with the energy market since the energy and reserve are produced from the same resources. Thus, it is inevitable to co-optimize the energy and ancillary service for efficient operation of energy and ancillary service market. Therefore, this paper proposes a new method for optimal dispatch of energy and frequency regulation reserve considering n-1 contingency of generator and transmission line using constraints and sensitivity based on AC power flow To verify the effectiveness of the proposed method, the numerical studies have been performed for 5-bus sample system and modified IEEE 14-bus system.

Energy Management of a Grid-connected High Power Energy Recovery Battery Testing System

  • Zhang, Ke;Long, Bo;Yoo, Cheol-Jung;Noh, Hye-Min;Chang, Young-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.839-847
    • /
    • 2016
  • Energy recovery battery testing systems (ERBTS) have been widely used in battery manufactures. All the ERBTS are connected in parallel which forms a special and complicated micro-grid system, which has the shortcomings of low energy recovery efficiency, complex grid-connected control algorithms issues for islanded detection, and complicated power circuit topology issues. To solve those shortcomings, a DC micro-grid system is proposed, the released testing energy has the priority to be reutilized between various testing system within the local grid, Compared to conventional scheme, the proposed system has the merits of a simplified power circuit topology, no needs for synchronous control, and much higher testing efficiency. The testing energy can be cycle-used inside the local micro-grid. The additional energy can be recovered to AC-grid. Numerous experimental comparison results between conventional and proposed scheme are provided to demonstrate the validity and effectiveness of the proposed technique.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

An AC Impedance Spectrum Measurement Device for the Battery Module to Predict the Remaining Useful Life of the Lithium-Ion Batteries (리튬배터리의 잔여 유효 수명 추정을 위한 배터리 모듈용 AC 임피던스 스펙트럼 측정장치)

  • Lee, Seung-June;Farhan, Farooq;Khan, Asad;Cho, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.251-260
    • /
    • 2020
  • A growing interest has emerged in recycling used automobile batteries into energy storage systems (ESSs) to prevent their harmful effects to the environment from improper disposal and to recycle such resources. To transform used batteries into ESSs, composing battery modules with similar performance by grading them is crucial. Imbalance among battery modules degrades the performance of an entire system. Thus, the selection of modules with similar performance and remaining life is the first prerequisite in the reuse of used batteries. In this study, we develop an instrument to measure the impedance spectrum of a battery module to predict the useful remaining life of the used battery. The developed hardware and software are used to apply the AC perturbation to the used battery module and measure its impedance spectrum. The developed instrument can measure the impedance spectrum of the battery module from 0.1 Hz to 1 kHz and calculate the equivalent circuit parameters through curve fitting. The performance of the developed instrument is verified by comparing the measured impedance spectra with those obtained by a commercial equipment.