• Title/Summary/Keyword: AC electric vehicle

Search Result 78, Processing Time 0.021 seconds

Wide Output Range AC/DC Converter for Rechargeable Battery of Electric Vehicle (광대역 출력을 가지는 전기자동차 배터리 충전용 AC/DC 컨버터)

  • Kim, Young-il;Kim, Hong-jung;Jun, Bum-su;Park, Gwi-chul;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.73-74
    • /
    • 2016
  • This paper proposes a wide output range AC/DC converter for a rechargeable battery of electric vehicle. In the proposed wide output range AC/DC converter for rechargeable battery of electric vehicle, the main transformer in the DC/DC stage is divided by two. Therefore, if the switch is connected to the middle tap, then half of the maximum voltage is applied. Otherwise, it can be applied the full range of the high voltage by connecting the switch to the whole tab. And also, it is designed to have a wide output voltage range by applying Vin/2 made by changing the full-bridge to half-bridge by using the bridge change switch of the input stage. As it can be supplied the wide range output voltage with a single module, it has the advantage of space utilization and cost reduction effect.

  • PDF

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kim T. Y.;Kno A. S.;Hwang K. C.;Choi J. M.;Kim J. B.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.298-302
    • /
    • 2004
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, UM(Intelligent Power module) is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

  • PDF

Battery Charging System for PHEV and EV using Single Phase AC/DC PWM Buck Converter

  • Lee, Jung-Hyo;Jung, Doo-Yong;Park, Sang-Hoon;Lee, Taek-Kie;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.736-744
    • /
    • 2012
  • In this paper, a battery charging system for Plug-in Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV), and operation algorithm of charging system are introduced. Also, the proposed charging system uses commercial electricity in order to charge the battery of parked PHEV and 48V battery charging system with power factor controllable single phase converter for PHEV is investigated in this paper. This research verifies the power factor control of input and the converter output controlled by the charge control algorithm through simulation and experiment.

Design of AC/DC Combined V2X System for Small Electric Vehicle (소형 전기차 적용을 위한 AC/DC 복합 V2X 시스템 설계)

  • Kim, Yeong-Jung;Chang, Young-Hag;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • The small electric vehicles equipped with V2X(vehicle to everything) systems may provide more information and function to the existing navigation system of the vehicle. The key components of V2X technology include V2V (vehicle to vehicle), V2N(vehicle to network) and V2I (vehicle to infrastructure). This study is to design and implementation of VI type E-PTO which is interfaced with external equipments, the work designs the components of E-PTO such as DC/DC converter, DC/AC converter, battery bidirectional charging system etc. Also, it implements the devices and control systems for driving. The test results of VI type E-PTO components showed allowable 10% requirements of transient voltage variation rate and recovery time within 100ms for start/stop and normal operation.

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kno Ae-Sook;Kim Tae-Yun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the harmonic content is eliminated by the phase shaft between two PWM converters switching phase. VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

Hybrid Sinusoidal-Pulse Charging Method for the Li-Ion Batteries in Electric Vehicle Applications Based on AC Impedance Analysis

  • Hu, Sideng;Liang, Zipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.268-276
    • /
    • 2016
  • A hybrid sinusoidal-pulse current (HSPC) charging method for the Li-ion batteries in electric vehicle applications is proposed in this paper. The HSPC charging method is based on the Li-ion battery ac-impedance spectrum analysis, while taking into account the high power requirement and system integration. The proposed HSPC method overcomes the power limitation in the sinusoidal ripple current (SRC) charging method. The charger shares the power devices in the motor inverter for hardware cost saving. Phase shifting in multiple pulse currents is employed to generate a high frequency multilevel charging current. Simulation and experimental results show that the proposed HSPC method improves the charger efficiency related to the hardware and the battery energy transfer efficiency.

Application of a Robust Fuzzy Sliding Mode Controller Synthesis on a Buck-Boost DC-DC Converter Power Supply for an Electric Vehicle Propulsion System

  • Allaoua, Boumediene;Laoufi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The development of electric vehicle power electronics system control, composed of DC-AC inverters and DC-DC converters, attract much research interest in the modern industry. A DC-AC inverter supplies the high-power motor torques of the propulsion system and utility loads of electric vehicles, whereas a DC-DC converter supplies the conventional low-power and low-voltage loads. However, the need for high-power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. The nonlinear control of power converters is an active research area in the field of power electronics. This paper focuses on the use of the fuzzy sliding mode strategy as a control strategy for buck-boost DC-DC converter power supplies in electric vehicles. The proposed fuzzy controller specifies changes in control signals based on the surface and knowledge on surface changes to satisfy the sliding mode stability and attraction conditions. The performance of the proposed fuzzy sliding controller is compared to that of the classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law, which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variations in load resistance and input voltage in the studied converter.

Battery Charger for EV (전기자동차용 배터리 충전기)

  • Yun, Su-Young;Chae, Hyung-Jun;Kim, Won-Yong;Moon, Hyung-Tae;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.460-465
    • /
    • 2010
  • The interest is coming to be high, recently with depletion of the fossil fuel and with carbon dioxide exhaust limit about emittion, from a car of Internal combustion engine to Electric vehicle. AC-DC converter is necessary to battery charging which is an electric vehicle energy storage. Necessary conditions of the converter are necessary for wide output voltage range, high efficiency, high power factor etc. It is composed two stages for wide output voltage range and insulation. Preliminary stage uses LLC resonant converter and the after stage uses BOOST converter PFC circuit for being considered a power factor and confirmed experimentally.

Power Conversion System for Electric Power Take-off of Agricultural Electric Vehicle (농업용 전기차량의 전기식 동력인출장치용 전력변환시스템)

  • Kwak, Bongwoo;Kim, Jonghoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.994-1002
    • /
    • 2019
  • In this paper, we propose the development of a power conversion system for electric power take-off (e-PTO) of agricultural electric vehicles. Most e-PTOs use commercial power $220V_{AC}$. A bidirectional power conversion system having a two-stage structure consisting of a DC-DC converter and a DC-AC inverter for supplying a high output voltage using a low battery voltage of an agricultural electric vehicle is suitable. we propose a power conversion system consisting of the one-stage dual active bridge (DAB) converter and the two-stage bidirectional full bridge inverter. In addition, we propose a soft start algorithm for reducing the inrush current generated by the link capacitor charging during the initial operation. A 3kW prototype system and its corresponding algorithms have been implemented to verify its effectiveness through experiments.

A study on the application of urban railway DC electric power for electric car charging system (전기차 충전시스템을 위한 도시철도 DC 전력의 활용방안 연구)

  • Kang, Hyun-Il;Kin, Youn-Sik;Sim, Jae-Suk;Im, Hyeong-Gil;Ryu, Ki-Seon;Lee, Gi-Seung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1855-1860
    • /
    • 2010
  • Electric vehicles have reached a new level of development with introductions by Chrysler, Ford, Honda and Toyota. Today's charging technology includes conductive and inductive charging systems. There are three standardized charging levels: Level 1: charging can be done from a standard, grounded AC 120V, 3-prong outlet available in all homes; Level 2: charging is at AC 240V, 40 amp charging station with special consumer features to make it easy and convenient to plug in and charge EVs at home or at an EV charging station; Level 3: a high-powered charging "fast charge" technology currently under development that will provide a charge in less than 15 minutes. The incoming AC power is converted to DC and stored in the vehicle's batteries. In this paper, we investigated the application of urban railway DC electric power for electric car charging system.

  • PDF