• Title/Summary/Keyword: AC Power Source

Search Result 524, Processing Time 0.029 seconds

A Study on the Fuel Cell Equivalent Circuit Modeling (연료전지 수치해석을 이용한 등가회로 모델링 연구)

  • OH, HWANYEONG;CHOI, YOON YOUNG;SOHN, YOUNG-JUN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.226-231
    • /
    • 2022
  • Power converter are usually equipped for fuel cell power generation system to connect alternating current (AC) electric power grid. When converting direct current (DC) of fuel cell power source into AC, the power converter has a frequency ripple, which affects the fuel cell and the grid. Therefore, an equivalent circuit having dynamic characteristics of fuel cell power, for example, impedance, is useful for designing an inverter circuit. In this study, the current, voltage and impedance characteristics were calculated through fuel cell modeling and validated by comparing them with experiments. The equivalent circuit element values according to the current density were formulated into equations so that it could be applied to the circuit design. It is expected that the process of the equivalent circuit modeling will be applied to the actual inverter circuit design and simulated fuel cell power sources.

A Phase Detection Method For Line Lock (전원동기를 위한 위상검출방법)

  • Kim, Young-Choon;Lee, Sa-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.428-430
    • /
    • 2007
  • Converter that is dc source equipment source's phase by reference control function that detect source's phase because should be done compulsorily use. Source's phase detect method there be method that use source's ac voltage directly by signal, and use methods that voltage detects status by PLL method and so on via point that '0' becomes usually. All above methods to detect phase are using, wrong action of phase detector converter's ailment or converter of burn can. Ths paper compares and examined usable phase detection method in source's frequency fluctuation presuming source's frequency using observer.

  • PDF

A Study on Performance Evaluation of On-board Electric Device of TTX(Tilting Train Express) (틸팅열차(TTX)의 정장품 성능평가 연구)

  • Han, Seong-Ho;Lee, Su-Gil;Seo, Sung-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.239-242
    • /
    • 2005
  • This paper introduced an approach of improvement of performance of Electric device for EMU type Train like as TTX. The electric equipments are characterized by insulation, Noise, cooling system etc. and Their weight arc decided by these factors. There are two kinds of power source in EMU train. First, DC voltage source, 1500 volt, 750 volt is used for subway system. Second, AC power source 25000 volt is applied to high speed train and existing main lines. Composite material has the protection of inrush current and high frequency noise. We can use this material to minimize weight of train. Additionally we can get energy saving when operator service TTX.

  • PDF

High Efficiency DC-DC Converter for Fuel Cell System (연료전지 계통 연계형 고효율 DC-DC 컨버터)

  • Oh, Eun-Tae;Yoon, Soo-Young;Lee, Yoon-Jae;You, Gwang-Min;Chae, Hyung-Jun;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2410-2415
    • /
    • 2009
  • Studying for environmental friendly and efficient energy source is now actively under way on because problems like environmental pollution and exhaust of natural resources are in issue. Fuel Cell which is an alternative energy source has low voltage and high current characteristic, therefore boost up voltage converter and DC-AC converter is required to use as a common power source. In this paper, DC-DC converter which has high efficient and high power density is proposed and verified by experimental result.

Analysis of Reactive Elements on The Voltage Source PWM Converter (전압형 PWM 컨버터의 무효성분 해석)

  • Kim, Je-Hong;Jung, Hwan-Myung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.243-245
    • /
    • 1994
  • A PWM forced-commutated converter with DC voltage source is studied in this paper. This PWM-VSC using spacs vector modulation permits to control bi-directional power exchange between the AC mains and the DC source. The principle of the active and reactive power control is presented. In transient operation, the analysis of reactive component current is performed. Finally, the simulation results are also presented and discussed.

  • PDF

Development of Multi-Cell Active Switched- Capacitor and Switched-Inductor Z-Source Inverter Topologies

  • Ho, Anh-Vu;Chun, Tae-Won;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.834-841
    • /
    • 2014
  • This paper proposes new active switched-capacitor and switched-inductor Z-source inverter (ASC/SL-ZSI) topologies, which can provide a higher boost ability with a small shoot-through time. The proposed ASC/SL-ZSIs inherit all of the advantages of the classical ZSI, and have a stronger voltage boost inversion ability when compared with the classical ZSI. Thus, the output ac voltage quality is significantly improved. In addition, more cells can be cascaded in the impedance network in order to obtain a very high boost ability. The proposed topologies can be applied to photovoltaic or fuel-cell generation systems with low-voltage renewal sources due to their wide range of obtainable voltages. Both simulations and the experimental results are carried out in order to verify performance of the proposed topologies.

Robust Deadbeat Current Control Method for Three-Phase Voltage-Source Active Power Filter

  • Nishida, Katsumi;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.102-111
    • /
    • 2004
  • This paper is concerned with a deadbeat current control implementation of shunt-type three-phase active power filter (APF). Although the one-dimensional deadbeat control method can attain time-optimal response of APF compensating current, one sampling period is actually required fur its settling time. This delay is a serious drawback for this control technique. To cancel such a delay and one more delay caused by DSP execution time, the desired APF compensating current has to be predicted two sampling periods ahead. Therefore an adaptive predictor is adopted for the purpose of both predicting the control error of two sampling periods ahead and bringing the robustness to the deadbeat current control system. By adding the adaptive predictor output as an adjustment term to the reference value of half a source voltage period before, settling time is made short in a transient state. On the other hand, in a steady state, THD (total harmonic distortion) of the utility grid side AC source current can be reduced as much as possible, compared to the case that ideal identification of controlled system could be made.

An Analysis on the Effectiveness of Harmonics Reduction for Variable Frequency Drive by Reactors (리액터에 의한 가변주파수 구동장치의 고조파저감효과 분석)

  • Kim, Deok-Ki;Yoon, Kyoung-Kuk;Kim, Hee-Moon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.770-777
    • /
    • 2015
  • Recently, due to the rapid development of Power Electronics, the usage of Non Linear Load variable frequency drivers (VFDs) is increasing in the electric propulsion vessels and offshore plants. And harmonics which is generated by the variable frequency drives is an important issue should be solved. Ac line reactors and dc link reactors are widely used in variable frequency drives to improve the drive performance such as reducing input current harmonics, elevating input power factor, and protecting the drives from surges, etc. The effectiveness of both types of reactors in reducing input harmonics is affected by the loading of the drives and the system source impedance. And it considered that inductance of DC link reactors should be about 1.7 times of AC line reactors for same effect. The rules to evaluate the needs and effectiveness using ac line or dc link reactors are proposed for practical appications. In this paper, a simulation is performed to investigate of such factors using software PSIM.

A Study on How to Minimize the Luminance Deviation of AC-LED Lighting (교류 LED 조명의 빛 밝기 편차를 최소화하는 방법에 대한 연구)

  • Dong Won Lee;Bong Hee Lee;Byungcheul Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.255-260
    • /
    • 2023
  • In order to spread LED lighting, LED lighting technology directly driven by alternating current (AC) commercial power has recently been introduced. Since current does not flow at a voltage lower than the threshold voltage of the LED, a non-conductive section occurs in the current waveform, and the higher the threshold voltage of the LED, the more discontinuous current waveforms are generated. In this paper, multi-LED modules are connected in series so that the threshold voltage can be adjusted according to the number of LED modules. A small number of LED modules are driven at a low instantaneous rectified voltage, and a large number of LED modules are driven at a high instantaneous rectified voltage to lengthen the overall lighting time of AC-LED lighting, thereby minimizing the luminance deviation of AC-LED lighting. In addition, the load current flowing through the LED module is adjusted to be the same as the design current even at the maximum rectified voltage higher than the design voltage, so that the light brightness of the LED module is kept constant. Therefore, even if the rectified voltage applied to the LED module changes, the AC-LED lighting in which the light brightness is constant and the luminance deviation is minimal has been realized.

A Study of Buck-Boost Current-Source PWM Inverter for Utility Interactive Photovoltaic Generation System (태양광발전과 계통연계를 위한 Buck-Boost 전류원형 PWM 인버터에 관한 연구)

  • Yang Geun-Ryoung;Kang Feel-Soon;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.63-68
    • /
    • 2002
  • In a utility interactive photovoltaic generation system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The do current becomes pulsated when the conventional inverter system operates in the continuous current mode and dc current pulsation causes the distortion of the ac current waveform. To reduce pulsation of dc input current, This paper presents a Buck-Boost PWM power inverter and its application for residential photovoltaic system. The PWM power inverter is realized by combining two sets of a high frequency Buck-Boost chopper and by making it operate in the discontinuous conduction mode. In this paper, we show the Buck-Boost PWM power inverter circuit, its equivalent circuit and basic differential equations and the power flow characteristics are clarified when the proposed Inverter is interconnected with the utility lines. In conclusion, the proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor

  • PDF